Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 327, Pages 55–73 (Mi znsl323)  

This article is cited in 1 scientific paper (total in 1 paper)

Exactness of approximation of a subharmonic function by the logarithm of the modulus of an analytic function in the Chebyshev metric

M. A. Hirnyk

Lviv Academy of Commerce
Full-text PDF (247 kB) Citations (1)
References:
Abstract: It is known that a subharmonic function $u(z)$ of finite order $\rho$ can be approximated by the logarithm of the modulus of an entire function $f(z)$ at the point $z$ up to $C\log|z|$ outside a very small exceptional set. We prove that if a constant $C$ decreases, then, beginning with the value $C=\rho/4$, the exceptional set enlarges substantially. This improves a result by Yulmukhametov. We also prove similar results for subharmonic functions of infinite order and functions subharmonic in the disk.
The main result of the article is the following.
Theorem 1. Suppose a number $\rho$ is positive, and an entire function $f(z)$ satisfies the condition
$$ ||z|^\rho-\log|f(z)||\le C\log|z|, \qquad z\notin E, $$
where $E\subset\bigcup_j\{z:|z-z_j|<r_j\}$, $r_j<|z_j|^{1-\rho/2-2C+\varepsilon}$, and $\varepsilon>0$. Then
$$ \sum_{R\le|z_j|\le 2R}r_j\ge R^{1+\rho/2-2C-3\varepsilon}, \qquad R>R(\varepsilon). $$
Received: 07.07.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 2, Pages 6393–6402
DOI: https://doi.org/10.1007/s10958-006-0356-7
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: M. A. Hirnyk, “Exactness of approximation of a subharmonic function by the logarithm of the modulus of an analytic function in the Chebyshev metric”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 55–73; J. Math. Sci. (N. Y.), 139:2 (2006), 6393–6402
Citation in format AMSBIB
\Bibitem{Hir05}
\by M.~A.~Hirnyk
\paper Exactness of approximation of a~subharmonic function by the logarithm of the modulus of an analytic function in the Chebyshev metric
\inbook Investigations on linear operators and function theory. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 327
\pages 55--73
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2184428}
\zmath{https://zbmath.org/?q=an:1101.31001}
\elib{https://elibrary.ru/item.asp?id=9127023}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 2
\pages 6393--6402
\crossref{https://doi.org/10.1007/s10958-006-0356-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750172885}
Linking options:
  • https://www.mathnet.ru/eng/znsl323
  • https://www.mathnet.ru/eng/znsl/v327/p55
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024