|
Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 300–306
(Mi znsl3211)
|
|
|
|
Short communications
The absence of local unconditional structure in some spaces of operators
V. G. Samarskii
Abstract:
We prove the following.
Theorem 1. {\it Let Banach spaces $X_n$, $Y_m$ have monotone unconditional bases $\{x_i\}_{i=1}^n$, $\{y_j\}_{j=1}^m$ resp., let $[\mathfrak A,\alpha]$ be a Banach ideal of operators, $S\in L(X_n,Y_m)$, $y'_j(Sx_i)=\pm1$. Then
$$
\chi(\mathfrak A(X_n,Y_m))\ge\frac{mn}{9\alpha(S)\|X_n\|\cdot\|Y_m^*\|},
$$
where $\|X_n\|=\|x_1+\dots+x_n\|$, $\|Y_m^*\|=\|y'_1+\dots+y'_m\|$, and $\chi(E)$ denotes the local unconditional constant of $E$.
Using this theorem we can ascertain the absence of local unconditional structure in some spaces of operators (see theorem 2 and propositions 1–7). In particular $\prod_p(\ell_n,\ell_v)$,
$N_p(\ell_u,\ell_v)$ have no local unconditional structure provided $\max(1/2,1/p)<1/u'$ or $\max(1/2,1/p')<1/v'$, $1<u,v,p<\infty$}.
Citation:
V. G. Samarskii, “The absence of local unconditional structure in some spaces of operators”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 300–306
Linking options:
https://www.mathnet.ru/eng/znsl3211 https://www.mathnet.ru/eng/znsl/v92/p300
|
Statistics & downloads: |
Abstract page: | 170 | Full-text PDF : | 45 |
|