Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 300–306 (Mi znsl3211)  

Short communications

The absence of local unconditional structure in some spaces of operators

V. G. Samarskii
Abstract: We prove the following.
Theorem 1. {\it Let Banach spaces $X_n$, $Y_m$ have monotone unconditional bases $\{x_i\}_{i=1}^n$, $\{y_j\}_{j=1}^m$ resp., let $[\mathfrak A,\alpha]$ be a Banach ideal of operators, $S\in L(X_n,Y_m)$, $y'_j(Sx_i)=\pm1$. Then
$$ \chi(\mathfrak A(X_n,Y_m))\ge\frac{mn}{9\alpha(S)\|X_n\|\cdot\|Y_m^*\|}, $$
where $\|X_n\|=\|x_1+\dots+x_n\|$, $\|Y_m^*\|=\|y'_1+\dots+y'_m\|$, and $\chi(E)$ denotes the local unconditional constant of $E$.
Using this theorem we can ascertain the absence of local unconditional structure in some spaces of operators (see theorem 2 and propositions 1–7). In particular $\prod_p(\ell_n,\ell_v)$, $N_p(\ell_u,\ell_v)$ have no local unconditional structure provided $\max(1/2,1/p)<1/u'$ or $\max(1/2,1/p')<1/v'$, $1<u,v,p<\infty$}.
Bibliographic databases:
Document Type: Article
UDC: 513.881
Language: Russian
Citation: V. G. Samarskii, “The absence of local unconditional structure in some spaces of operators”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 300–306
Citation in format AMSBIB
\Bibitem{Sam79}
\by V.~G.~Samarskii
\paper The absence of local unconditional structure in some spaces of operators
\inbook Investigations on linear operators and function theory. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 92
\pages 300--306
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=566763}
\zmath{https://zbmath.org/?q=an:0431.46014}
Linking options:
  • https://www.mathnet.ru/eng/znsl3211
  • https://www.mathnet.ru/eng/znsl/v92/p300
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024