|
Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 268–273
(Mi znsl3205)
|
|
|
|
Short communications
An estimate of distances between finite dimensional symmetric spaces
E. D. Gluskin
Abstract:
If $E_1$, $E_2$ are two $n$-dimensional symmetric spaces then the Banach–Mazur distance between them satisfies the inequality $d(E_1,E_2)\le cn^{1/2}\log^4n$, where $C$ is an absolute constant.
Citation:
E. D. Gluskin, “An estimate of distances between finite dimensional symmetric spaces”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 268–273
Linking options:
https://www.mathnet.ru/eng/znsl3205 https://www.mathnet.ru/eng/znsl/v92/p268
|
Statistics & downloads: |
Abstract page: | 127 | Full-text PDF : | 46 |
|