Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 253–258 (Mi znsl3202)  

Short communications

All closed ideals, of the algebra $A_\varphi(\mathbb C)$ are divisorial

S. A. Apresyan
Abstract: Let $\lambda$ be an increasing function on the half-line (satis fying some regularity growth conditions), $A_\lambda$ the algebra of all entire functions $f$ satisfying $\log|f(z)|=0(\lambda(|z|))$ ($|z|\to\infty$). It is proved that every closed ideal $I$ of the algebra $A_\lambda$ is divisorial, i.e.  $I=I_k\overset{\text{def}}=\{f\in A_\lambda:k_f(\xi)\ge k_I(\xi),\xi\in\mathbb C\}$, $k_f(\xi)$ being the multiplicity of the zero of $f$ at $\xi$, $k_I(\xi)=\min_{f\in I}k_f(\xi)$, $\xi\in\mathbb C$. It is shown that $f\equiv0$ provided $f\in A_\lambda$,
$$ \lim_{\substack{\xi\in\gamma\\|\xi|\to\infty}}\frac{\log|f(\xi)|}{\lambda(|\xi|)}=-\infty $$
where $\gamma$ denotes continuous curve joining the origin with the infinity.
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: S. A. Apresyan, “All closed ideals, of the algebra $A_\varphi(\mathbb C)$ are divisorial”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 253–258
Citation in format AMSBIB
\Bibitem{Apr79}
\by S.~A.~Apresyan
\paper All closed ideals, of the algebra $A_\varphi(\mathbb C)$ are divisorial
\inbook Investigations on linear operators and function theory. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 92
\pages 253--258
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3202}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=566754}
\zmath{https://zbmath.org/?q=an:0431.46039}
Linking options:
  • https://www.mathnet.ru/eng/znsl3202
  • https://www.mathnet.ru/eng/znsl/v92/p253
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024