Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 327, Pages 5–16 (Mi znsl320)  

This article is cited in 1 scientific paper (total in 1 paper)

A version of the Grothendieck theorem for subspaces of analytic functions in lattices

D. S. Anisimov

Saint-Petersburg State University
Full-text PDF (214 kB) Citations (1)
References:
Abstract: A version of Grothendieck's inequality says that any bounded linear operator acting from a Banach lattice $X$ to a Banach lattice $Y$, also acts from $X(\ell^2)$ to $Y(\ell^2)$. A similar statement is proved for Hardy-type subspaces in lattices of measurable functions. Namely, let $X$ be a Banach lattice of measurable functions on the circle, and let an operator $T$ act from the corresponding subspace of analytic functions $X_A$ to a Banach lattice $Y$ or, if $Y$ is also a lattice of measurable functions on the circle, to the quotient space $Y/Y_A$. Under certain mild conditions on the lattices involved, it is proved that $T$ induces an operator acting from $X_A(\ell^2)$ to $Y(\ell^2)$ or to $Y/Y_A(\ell^2)$, respectively.
Received: 20.05.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 139, Issue 2, Pages 6363–6368
DOI: https://doi.org/10.1007/s10958-006-0353-x
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: D. S. Anisimov, “A version of the Grothendieck theorem for subspaces of analytic functions in lattices”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 5–16; J. Math. Sci. (N. Y.), 139:2 (2006), 6363–6368
Citation in format AMSBIB
\Bibitem{Ani05}
\by D.~S.~Anisimov
\paper A version of the Grothendieck theorem for subspaces of analytic functions in lattices
\inbook Investigations on linear operators and function theory. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 327
\pages 5--16
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl320}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2184425}
\zmath{https://zbmath.org/?q=an:1091.46018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 2
\pages 6363--6368
\crossref{https://doi.org/10.1007/s10958-006-0353-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750145429}
Linking options:
  • https://www.mathnet.ru/eng/znsl320
  • https://www.mathnet.ru/eng/znsl/v327/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024