Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 182–191 (Mi znsl3196)  

This article is cited in 11 scientific papers (total in 11 papers)

Quantitative aspect of correction theorems

S. V. Kislyakov
Abstract: Let $U$ be the Banach space of all functions $g$ on the unite circle $\mathbb T$, such that the series $\sum_{j\ge0}\hat{g}(j)z^j$, $\sum_{j<0}\hat{g}(j)z^j$ converge uniformly on $\mathbb T$. Supply $U$ with the norm $\|\cdot\|_U$,
$$ \|g\|_U\overset{\text{def}}=\sup\{|\sum_{m\le j<n} \hat{g}(j)\xi^j|:m,n\in\mathbb Z,n\in\mathbb Z,|\xi|=1\}. $$
We prove the following quantitative refinement of the classical D. E. Mensov's theorem: if $f\in L^\infty(\mathbb T)$ and $0<\varepsilon<1$ then there exists a function $g$ in $U$ such that $\operatorname{mes}\{f\ne g\}\le C_\varepsilon$ $\|g\|_U\le C(\log1/{\varepsilon})\|f\|_\infty$, $C$ an absolute constant. We also show that the multiplier $\log1/\varepsilon$ is the best possible and describ a general scheme of proving theorems similar to that stated above for some other pairs ($L^\infty(S\mu),X$) (instead of ($L^\infty(\mathbb T),U$). For this scheme to be applicable it is sufficient to assume, for example, that certain “weak type 1-1 inequality” holds for elements of the spaces $X^*$. Such an inequality does hold if $X=U$ (this fact was proved by S. A. Vinogradov by means of Carleson–Hunt almost everywhere convergence theorem), but the scheme appears to be useful in some other cases as well.
Bibliographic databases:
UDC: 517.513
Language: Russian
Citation: S. V. Kislyakov, “Quantitative aspect of correction theorems”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 182–191
Citation in format AMSBIB
\Bibitem{Kis79}
\by S.~V.~Kislyakov
\paper Quantitative aspect of correction theorems
\inbook Investigations on linear operators and function theory. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 92
\pages 182--191
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=566748}
\zmath{https://zbmath.org/?q=an:0434.42017}
Linking options:
  • https://www.mathnet.ru/eng/znsl3196
  • https://www.mathnet.ru/eng/znsl/v92/p182
    Cycle of papers
    This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :124
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024