Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 134–170 (Mi znsl3194)  

The uncertainty principle for operators commuting with translations. I

B. Jöricke, V. P. Havin
Abstract: Let $X$ be a class of distributions (in $\mathbb R$), $K$ a distribution, $E\subset\mathbb R$. The set $E$ is said to be a $(K,X)$-set if there is no non-zero $f\in X$ such that. The $f\in X$, $f|E=(k\ast f)|E$ article begins with some examples of kernels $K$ for which every non-empty interval is a $(K,L^2)$-set (among them are the M. Btiesz kernels). Some connections with the Cauchy problem for the laplace equation and with approximations by linear combinations of translations of the kernel are discussed. The principal results treat kernels $K$ with the “semirational” Fourier transforms (symbols) $\hat K$. This means that $\hat K$ coincides with a rational function $\tau$ on a ray $(C,+\infty)$ and $\operatorname{mes}\{\xi\in(-\infty,b]:\hat{K}(\xi)=r(\xi)\}=0$ for a $b\le c$ is proved that every Carleson set $E$ with $\operatorname{mes}E>0$ is a $(K,X)$-set if $K$ has a semiratioaal symbol and $X$ is the domain (in $L^2$) of the operator $f\to K*f$ (a compact set $E$ of real numbers is said to be a Carleson set if $\sum|\ell|\log|\ell|>-\infty$, the sum being taken over the family of all bounded complementary intervals $l$ of $E$). This result implies some uniqueness theorems for weakly perturbed Hilbert transforms.
Bibliographic databases:
UDC: 517.947
Language: Russian
Citation: B. Jöricke, V. P. Havin, “The uncertainty principle for operators commuting with translations. I”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 134–170
Citation in format AMSBIB
\Bibitem{JorHav79}
\by B.~J\"oricke, V.~P.~Havin
\paper The uncertainty principle for operators commuting with translations.~I
\inbook Investigations on linear operators and function theory. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 92
\pages 134--170
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=566746}
\zmath{https://zbmath.org/?q=an:0431.46031}
Linking options:
  • https://www.mathnet.ru/eng/znsl3194
  • https://www.mathnet.ru/eng/znsl/v92/p134
    Erratum Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :100
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024