Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 103–114 (Mi znsl3192)  

This article is cited in 2 scientific papers (total in 2 papers)

Invariant subspaces and rational approximation

M. B. Gribov, N. K. Nikol'skii
Full-text PDF (632 kB) Citations (2)
Abstract: Let $T$ be a linear operator in a Banach space $X$ with the complete set of eigen- and root-vectors. Each of formulas (1)–(3) defines a “capacity” $\operatorname{cap}k$ of the integer valued function (the divisor) $k$, a capacity $\operatorname{cap}E\overset{\text{def}}=\operatorname{cap}k$ of the subspace $E\overset{\text{def}}=E^k$, generated by the root subspaces $\operatorname{Ker}(T-\lambda I)^s$, $0\le s<k(\lambda)$, $\lambda\in\mathbb C$, or a capacity $\operatorname{cap}x\overset{\text{def}}=\operatorname{cap}k$ of the vector $x$ $\operatorname{span}(T^nx:n\ge0)=E^k$. It is proved that
$$ \varliminf E^{k_n}\overset{\text{def}}= \{x:\lim\operatorname{dist}(x,E_{k_n})=0\}\neq X\Longleftrightarrow \varliminf\operatorname{cap}E^{k_n}<\infty $$
and that $x$ is not cyclic $(V(T^nx:n\ge0)\ne x)$, if $x=\lim_nx_n$, $\sup_n\operatorname{cap}x_n<\infty$. The principal special case $T=Z^*$, $Z^*f\overset{\text{def}}=\frac{f-f(0)}z$ is considered in detail. In this case root-vectors are rational functions. Bilateral estimates of capacities are given for the Hardy spaces $H^p$, $1\le p\le\infty$, and the spaces $C_A^{(n)}\overset{\text{def}}=\{f:f^{(n)}\in C_A\}$ ($C_A$ being the disc-algebra). These results imply known theorems of G. Tumarkin, H. Douglas–H. Shapiro–A. Shields and of H. Hilden–L. Wallen.
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: M. B. Gribov, N. K. Nikol'skii, “Invariant subspaces and rational approximation”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 103–114
Citation in format AMSBIB
\Bibitem{GriNik79}
\by M.~B.~Gribov, N.~K.~Nikol'skii
\paper Invariant subspaces and rational approximation
\inbook Investigations on linear operators and function theory. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 92
\pages 103--114
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=566744}
\zmath{https://zbmath.org/?q=an:0433.31010}
Linking options:
  • https://www.mathnet.ru/eng/znsl3192
  • https://www.mathnet.ru/eng/znsl/v92/p103
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024