Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 85–102 (Mi znsl3191)  

This article is cited in 2 scientific papers (total in 2 papers)

Tenson products of $p$-absolutely summing operators and right ($I_p$, $N_p$) multipliers

E. D. Gluskin, S. V. Kislyakov, O. I. Reinov
Full-text PDF (963 kB) Citations (2)
Abstract: The article investigates the question of coincidence of some classes of operators, acting from Banach spaces whose duals do not satisfy the $RN$ condition. Separable Banach spaces $JT_r$, $r\in[1,\infty)$, with the following properties are constructed: 1) For each $r$, $r\ge1$, the space $JT_r$ does not contain subspaces isomorphic to $\ell_1$ and has non-separable dual. 2) for each $p$, $p\in(1,\infty)$, and for every Banach space $Z$ $I_p(JT_r,Z)=N_p(JT_r,Z)$. 3) If $1<r<2$ then for each $p$, $p\in(1,r')$, and for every Banach space $Z$ $I_p(JT_r,Z)=N_p(JT_r,Z)$ and for each $p$, $p\ge r'$, there is a $p$-integral operator on $JT_r$ which is not quasi-$p$-nuclear. 4) If $2\le r<\infty$ then for each $p$, $p\ge1$, there is a $p$-integral operator on $JT_r$ which is not quasi-$p$-nuclear. 5) If $1\le r<2$ then $\Pi_1(JT_r,Z)=N_1Q(JT_r,Z)$ for every Banach space $Z$. The above properties of the spaces $JT_r$, are obtained by means of a theorem on tensor products of absolutely $p$-summing operators. This theorem also (as simple corollaries) some recent generalizations of Grothendieck's inequality (see, for example, [7]).
Bibliographic databases:
UDC: 513.881
Language: Russian
Citation: E. D. Gluskin, S. V. Kislyakov, O. I. Reinov, “Tenson products of $p$-absolutely summing operators and right ($I_p$, $N_p$) multipliers”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 85–102
Citation in format AMSBIB
\Bibitem{GluKisRei79}
\by E.~D.~Gluskin, S.~V.~Kislyakov, O.~I.~Reinov
\paper Tenson products of $p$-absolutely summing operators and right ($I_p$, $N_p$) multipliers
\inbook Investigations on linear operators and function theory. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 92
\pages 85--102
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3191}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=566743}
\zmath{https://zbmath.org/?q=an:0431.47026}
Linking options:
  • https://www.mathnet.ru/eng/znsl3191
  • https://www.mathnet.ru/eng/znsl/v92/p85
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :101
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024