Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 60–84 (Mi znsl3190)  

This article is cited in 1 scientific paper (total in 1 paper)

The simultaneous approximation by polynomials on the circle and in the interior of the disc

A. L. Vol'berg
Full-text PDF (905 kB) Citations (1)
Abstract: The subject of this paper is the investigation of the question whether the polynomials form a dense set in the space $L^2(h)\oplus L^2(\mu_{\mathbb D})$ where $h$ is a weight on the unit circle $\mathbb T$ and $\mu_{\mathbb D}$ is a measure in the unit disc $\mathbb D$. In the case $\operatorname{supp}\mu_{\mathbb D}\subset[0,1]$ some necessary and some (close) sufficient conditions for the answer to be positive are obtained (these conditions say, roughly speaking, thet the functions $\mu_{\mathbb D}(1-\delta,1)$ and $h(e^{i\Theta})$ tend to zero sufficiently rapidly as $\delta\to0$ and $\Theta\to0$). In the general case only sufficient conditions are given.
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. L. Vol'berg, “The simultaneous approximation by polynomials on the circle and in the interior of the disc”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 60–84
Citation in format AMSBIB
\Bibitem{Vol79}
\by A.~L.~Vol'berg
\paper The simultaneous approximation by polynomials on the circle and in the interior of the disc
\inbook Investigations on linear operators and function theory. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 92
\pages 60--84
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3190}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=566742}
\zmath{https://zbmath.org/?q=an:0429.41011}
Linking options:
  • https://www.mathnet.ru/eng/znsl3190
  • https://www.mathnet.ru/eng/znsl/v92/p60
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024