Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 92, Pages 30–50 (Mi znsl3188)  

The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces

A. V. Bukhvalov
Abstract: Let $X$ a complex Banach space, $1<p<\infty$, $1/p+1/p'=1$; $A^p(X)$ is the space of all $X$-valued analytic in the open disk $L^p$-integrable functions. By means of the natural duality it is proved that $A^p(X)^*=A^{p'}(X^*)$. Let $\mathbf A^p$ and $\mathbf H^p$ be the functors in a category of Banach spaces, generated by $A^p(X)$ and the Hardy space $H^p(X)$ respectively. With some restrictions on the category the following it true: 1) $D\mathbf A^p=\mathbf A^{p'}$; 2) $H^p(X)^*=D\mathbf H^p(X^*)$; 3) $D\mathbf H^p\ne\mathbf H^{p'}$ in the category of all separable reflexive Banach spaces; 4) the functors $\mathbf A^p$ and $\mathbf H^p$ are reflexive.
Bibliographic databases:
UDC: 513.881
Language: Russian
Citation: A. V. Bukhvalov, “The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, "Nauka", Leningrad. Otdel., Leningrad, 1979, 30–50
Citation in format AMSBIB
\Bibitem{Buk79}
\by A.~V.~Bukhvalov
\paper The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces
\inbook Investigations on linear operators and function theory. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 92
\pages 30--50
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3188}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=566740}
\zmath{https://zbmath.org/?q=an:0431.46050}
Linking options:
  • https://www.mathnet.ru/eng/znsl3188
  • https://www.mathnet.ru/eng/znsl/v92/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024