|
Zapiski Nauchnykh Seminarov POMI, 2009, Volume 364, Pages 148–165
(Mi znsl3155)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors
A. Yu. Zaitsev St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
The aim of this paper is to derive new optimal bounds for the rate of strong Gaussian approximation of sums of i.i.d. $\mathbf R^d$-valued random variables $\xi_j$ having finite moments of the form $\mathbf E\,H(|\xi_j|)$, where $H(x)$ is a monotone function growing not slower than $x^{2+\delta}$ and not faster than $e^{cx}$. We obtain some generalizations of the results of U. Einmahl (1989). Bibl. – 44 titles.
Received: 05.11.2008
Citation:
A. Yu. Zaitsev, “The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors”, Probability and statistics. Part 14–2, Zap. Nauchn. Sem. POMI, 364, POMI, St. Petersburg, 2009, 148–165; J. Math. Sci. (N. Y.), 163:4 (2010), 399–408
Linking options:
https://www.mathnet.ru/eng/znsl3155 https://www.mathnet.ru/eng/znsl/v364/p148
|
Statistics & downloads: |
Abstract page: | 331 | Full-text PDF : | 104 | References: | 65 |
|