|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 328, Pages 169–181
(Mi znsl313)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Large deviations for sample paths of Gaussian processes quadratic variations
O. Perrina, M. Zanib a Université Toulouse 1 Sciences Sociales
b Université Paris XII Val de Marne
Abstract:
We show a functional large deviations principle for the family of random functions
$$
\left\{V_n(x)=\sum_{k=1}^{[nx]}(Z_{k/n}-Z_{k-1/n})^2,\ x\in[0,1]\right\},
$$
where $\{Z_t,\,t\in[0,1]\}$ is a real valued centered Gaussian process.
Received: 07.10.2005
Citation:
O. Perrin, M. Zani, “Large deviations for sample paths of Gaussian processes quadratic variations”, Probability and statistics. Part 9, Zap. Nauchn. Sem. POMI, 328, POMI, St. Petersburg, 2005, 169–181; J. Math. Sci. (N. Y.), 139:3 (2006), 6595–6602
Linking options:
https://www.mathnet.ru/eng/znsl313 https://www.mathnet.ru/eng/znsl/v328/p169
|
|