Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 88, Pages 197–208 (Mi znsl3114)  

This article is cited in 2 scientific papers (total in 2 papers)

Preservation of the equivalence of proofs under reduction of the formula depth

S. V. Solov'ev
Full-text PDF (572 kB) Citations (2)
Abstract: The derivability of a sequent is the invariant of the following transformation decreasing the formula depth of the sequent. If $S$ is a sequent and $\Phi[F]$ is any $S$-formula then we replace $\Phi[F]$ by $\Phi[p]$ and add a new formula $\Psi$ into antecedent of $S$. If $F$ is positive in $S$ then $\Psi=F\supset p$ and $\Psi=p\supset F$ otherwise, where $p$ is a new propositional variable.
We prove that a natural extension of this transformation to derivations is univalent, i.e. two derivations are equivalent (i.e. have the same normal form) if and only if the transformed ones are equivalent.
We call sequent $S$ the "$R$-sequent" if and only if the succedent of $S$ is a variable and antecedent formulas of $S$ are of the form $b$, $b\&c$, $b\supset c$, $(b\supset c)\supset d$, $(b\&c)\supset d$, $b\supset(c\&d)$ where $b,c,d$ – are variables.
By an iteration of transformation described above a sequent $S$ can be transformed into $R$-sequent $S$. This result permits us to restrict consideration to $R$-sequents in proofs of many theorems. By an iteration of transformation described above a sequent $S$ can be transformed into $R$-sequent $S'$.This result permits us to restrict consideration to $R$-sequents in proofs of many theorems. From the point of wiev of the category theory (cf. [1], [2]) our transformation is an univalent functor $\mathfrak{A}\colon\mathbb C\to\mathbb C$ where $\mathbb C$, is a free cartesian closed category.
English version:
Journal of Soviet Mathematics, 1982, Volume 20, Issue 4, Pages 2370–2376
DOI: https://doi.org/10.1007/BF01629449
Bibliographic databases:
UDC: 510.6
Language: Russian
Citation: S. V. Solov'ev, “Preservation of the equivalence of proofs under reduction of the formula depth”, Studies in constructive mathematics and mathematical logic. Part VIII, Zap. Nauchn. Sem. LOMI, 88, "Nauka", Leningrad. Otdel., Leningrad, 1979, 197–208; J. Soviet Math., 20:4 (1982), 2370–2376
Citation in format AMSBIB
\Bibitem{Sol79}
\by S.~V.~Solov'ev
\paper Preservation of the equivalence of proofs under reduction of the formula depth
\inbook Studies in constructive mathematics and mathematical logic. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 88
\pages 197--208
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=556231}
\zmath{https://zbmath.org/?q=an:0429.03036|0493.03031}
\transl
\jour J. Soviet Math.
\yr 1982
\vol 20
\issue 4
\pages 2370--2376
\crossref{https://doi.org/10.1007/BF01629449}
Linking options:
  • https://www.mathnet.ru/eng/znsl3114
  • https://www.mathnet.ru/eng/znsl/v88/p197
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024