|
Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 88, Pages 163–175
(Mi znsl3110)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Three ways of recognizing essential formulas in sequents
V. P. Orevkov
Abstract:
Let $A$ be a formula, $\Gamma\to\Delta$ be a sequent. The formula $A$ is unessential in $A,\Gamma\to\Delta$ if derivability of $A,\Gamma\to\Delta$ implies derivability of $\Gamma\to\Delta$. The paper describes 3 sufficient conditions for a formula to be unessential in classical and intuitionistic predicate calculus. The conditions are applied for proving hereditary unsolvability of these theories:
1) the intuitionistic equality theory with the axiom $\rceil\rceil\forall xy(x=y)$, the scheme
\begin{equation}
\forall_\alpha\rceil\rceil A\supset\rceil\rceil\forall_\alpha A
\end{equation}
and the scheme
\begin{equation}
\rceil A\vee\rceil\rceil A;
\end{equation}
2) the intuitionistic monadic predicate calculus with one predicate letter with the axiom the scheme (1) and the scheme (2).
Citation:
V. P. Orevkov, “Three ways of recognizing essential formulas in sequents”, Studies in constructive mathematics and mathematical logic. Part VIII, Zap. Nauchn. Sem. LOMI, 88, "Nauka", Leningrad. Otdel., Leningrad, 1979, 163–175; J. Soviet Math., 20:4 (1982), 2351–2357
Linking options:
https://www.mathnet.ru/eng/znsl3110 https://www.mathnet.ru/eng/znsl/v88/p163
|
Statistics & downloads: |
Abstract page: | 233 | Full-text PDF : | 273 |
|