Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 88, Pages 90–105 (Mi znsl3106)  

Calculuses with monotone deductions and their economic interpretation

S. Yu. Maslov
Abstract: Let the possible ways of development of some system from an initial state $X_0$ be given by a deductive system $\langle\mathfrak A;X_0\rangle$ ($X_0$ is the axiom, the algorithm $\mathfrak A$ defines the relation of onestep deducibility. Let $Y_1,\dots,Y_\ell$ be all the states which are onestep deducible from $X$ (i.e. $\mathfrak A(X)=\{Y_1,\dots,Y_\ell\})$. Let $\mathfrak P$ be an algorithm assigning to every $X$ the transition probabilityes $p_1,\dots,p_\ell$ and $p=1-\sum_{1\leq i\leq\ell}p_i$ be the probability of the transition to the special state STOP. $\mathfrak P$ defines a probabilistic measure on the set of all deduction. The information in the pair $\langle\mathfrak A;X_0\rangle$, $\mathfrak P$ is defined by the formuls:
$$ \text{И}_{\langle\mathfrak A;X_0\rangle},\mathfrak P =-\sum_{X\in\langle\mathfrak A;X_0\rangle}p_X\log_2p_X, $$
($p_X$ is the probability of $X$ being the last state before STOP). Consider $\mathfrak A$ assigning the fixed $p$ to every $X$ and satisfying the condition $p_1=\dots=p_\ell$. Then the information in $\langle\mathfrak A;X_0\rangle$ becomes the function $\text{И}_{\langle\mathfrak A;X_0\rangle}(p)$ of $p$ only. The essential characteristic of $\langle\mathfrak A;X_0\rangle$ is given by the assymptotics of $\text{И}_{\langle\mathfrak A;X_0\rangle}$ as $p\to0$. This characteristic has a good correspondence with intuitive notions about relative “power” of calculuses.
Now let us consider $\text{И}_{\langle\mathfrak A;X_0\rangle}(p)$ as a function of $X$. For many kinds of actual systems the strategy of favorable development has a strong correlation with maximizing this function; let us consider here the simplest variant systems of economical character. Let $X,Y,Z$ stand for $n$-ary vectors with nonnegative integer components. In interpretation the components are resourses (and products), $\mathfrak A$ represents the technological possibilities of transformations of resourses. Assume
$$ Y\in\mathfrak A(X)\Longrightarrow\forall Z(Y+Z\in\mathfrak A(X+Z)). $$

Theorem. {\it For every $\langle\mathfrak A;X_0\rangle$ there exists such an algorithm $\mathfrak L(p,\varepsilon)$ of polinomial complexity ($0<p<1$, $\varepsilon>0$) that:
1) $\mathfrak L(p,\varepsilon)\in\langle\mathfrak A;X_0\rangle$;
2) $\forall Y_{Y\in\langle\mathfrak A;X_0\rangle} (\text{И}_{\langle\mathfrak A;X_0\rangle}(p)\leq \text{И}_{\langle\mathfrak A; \mathfrak L(p,\varepsilon)\rangle}(p)+\varepsilon)$;
3) $\exists\bar p(\bar p>0\&\forall p_1p_2\varepsilon_1\varepsilon_2 (\bar p\geq p_1\geq p_2\&\varepsilon_1\geq\varepsilon_2 \Longrightarrow\mathfrak L(p_2,\varepsilon_2)\in\langle\mathfrak A; \mathfrak L(p_1,\varepsilon_1)\rangle))$. Instead of (1) now assume the condition of monotonicity $Y\in\mathfrak A(X)\Longrightarrow\forall Z\exists Z'(Y+Z'\in\mathfrak A(X+Z))$. System $\langle\mathfrak A;X_0\rangle$ is weak-decidible if for every $X$ we can algorithmically recognize an existence of such $Z$ that $X+Z$ is deducible in $\langle\mathfrak A;X_0\rangle$. Under broad conditions $\langle\mathfrak A;X_0\rangle$ is weak-decidable, but there are undecidable systems for $\mathfrak A$ which describe very symple technological possibilities.}
The economical interpretation of results is studied.
English version:
Journal of Soviet Mathematics, 1982, Volume 20, Issue 4, Pages 2314–2321
DOI: https://doi.org/10.1007/BF01629441
Bibliographic databases:
UDC: 510.66
Language: Russian
Citation: S. Yu. Maslov, “Calculuses with monotone deductions and their economic interpretation”, Studies in constructive mathematics and mathematical logic. Part VIII, Zap. Nauchn. Sem. LOMI, 88, "Nauka", Leningrad. Otdel., Leningrad, 1979, 90–105; J. Soviet Math., 20:4 (1982), 2314–2321
Citation in format AMSBIB
\Bibitem{Mas79}
\by S.~Yu.~Maslov
\paper Calculuses with monotone deductions and their economic interpretation
\inbook Studies in constructive mathematics and mathematical logic. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 88
\pages 90--105
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=556223}
\zmath{https://zbmath.org/?q=an:0429.03042|0493.03036}
\transl
\jour J. Soviet Math.
\yr 1982
\vol 20
\issue 4
\pages 2314--2321
\crossref{https://doi.org/10.1007/BF01629441}
Linking options:
  • https://www.mathnet.ru/eng/znsl3106
  • https://www.mathnet.ru/eng/znsl/v88/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024