Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 88, Pages 73–77 (Mi znsl3104)  

On decision procedures for invariant properties of short algorithms

N. K. Kossovski
Abstract: Lower bounds on Gödel numbers of decision procedures for invariant properties of short algorithms are established.
Let $R$ be an enumerable class of partial (or general) recursive functions with partial recursive universal functions $u^1$ and $u^2$ for unary and binary functions of class $R$ respectively. Let also a function $S$ and constants $c$, $a$ satisfy the following conditions for every $x,y,z,u,v$.
1. $\{S(x,y)\}(z)\simeq\{x\}(y,z)$
2. $\{S(c,x)\}(y,z)\simeq\{x\}(S(y,y),z)$
3. $\{S^3(a,x,y,z)\}(u,v)\simeq$ if $\{z\}(u)\ne0$ then $\{x\}(v)$ else $\{y\}(v)$ where $\{x\}(y)$, $\{x\}(y,z)$ and $S^3(a,x,y,z)$ stand for instead of $u^1(x,y)$, $u^2(x,y,z)$ and $S(S(S(a,x),y),z)$ respectively. Many interesting classes of algorithms with natural numbering satisfy such conditions.
Let $t(z)=\max(S(i,j,),z)$ for all $i,j\leq z$, $t^{-1}(z)=\mu y_{\leq z}[t(y)\leq z]$. Evidently, $t^{-1}(t(z))=z$.
A property $A$ is called non-trivial up to $N_1$ if $\exists_{ab_{<N_1}}(A(a)\&\rceil A(b))$.
A property $A$ is called invariant up to $N$ ($N$ may be equal to $+\infty$) if for all $m$, $n$, $x<N$ $(\{m\}(x)\simeq\{n\}(x))\supset(A(m)\equiv A(n))$.
This theorem is a generalization of the main theorem from [2], which entails the Rice theorem.
Theorem. {\it Let an algorithm $\{m\}$ decide some property $A$ of unary algorithms of class $R$. If the property $A$ is non-trivial up to $N_1$, and invariant up to $N$, then for $N\geq\max(t^{\langle2\rangle}(c)$, $t^{\langle5\rangle}(N_1)$, $t^{\langle5\rangle}(a))$ we have $m\geq t^{\langle{-3}\rangle}(N)$, where $t^{\langle k\rangle}(x)$ and $t^{\langle{-k}\rangle}(x)$ stand for $t(\dots t(x)\dots)$ $k$ times and $t^{-1}(\dots t^{-1}(x)\dots)$ $k$ times respectively.}
English version:
Journal of Soviet Mathematics, 1982, Volume 20, Issue 4, Pages 2304–2307
DOI: https://doi.org/10.1007/BF01629439
Bibliographic databases:
UDC: 510.52
Language: Russian
Citation: N. K. Kossovski, “On decision procedures for invariant properties of short algorithms”, Studies in constructive mathematics and mathematical logic. Part VIII, Zap. Nauchn. Sem. LOMI, 88, "Nauka", Leningrad. Otdel., Leningrad, 1979, 73–77; J. Soviet Math., 20:4 (1982), 2304–2307
Citation in format AMSBIB
\Bibitem{Kos79}
\by N.~K.~Kossovski
\paper On decision procedures for invariant properties of short algorithms
\inbook Studies in constructive mathematics and mathematical logic. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 88
\pages 73--77
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=556221}
\zmath{https://zbmath.org/?q=an:0432.03025|0493.03019}
\transl
\jour J. Soviet Math.
\yr 1982
\vol 20
\issue 4
\pages 2304--2307
\crossref{https://doi.org/10.1007/BF01629439}
Linking options:
  • https://www.mathnet.ru/eng/znsl3104
  • https://www.mathnet.ru/eng/znsl/v88/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024