Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 88, Pages 56–61 (Mi znsl3102)  

This article is cited in 5 scientific papers (total in 5 papers)

Two reductions of graph isomorphism to problems for polynomials

D. Yu. Grigor'ev
Full-text PDF (363 kB) Citations (5)
Abstract: The problem of isomorphism of $n$-vertices graphs with weights on their edges possesses a full system of invariants which consists of $(n^2+1)$ polynomials of degree $\leq n^2$ (theorem 1). The proof of existence of such a system is not effective and is based on the primitive element theorem. Theorem 2 asserts that the graph isomorphism problem (or even the problem of divising the set of vertices of a graph $T$ on the domains of transitivity) can be reduced in polynomial time to the problem of decomposition of some univariable polynomial $f$ into irreducible multipliers over some field $F_T$ (the coefficients of $f$ depend only on the number of vertices of $T$).
English version:
Journal of Soviet Mathematics, 1982, Volume 20, Issue 4, Pages 2296–2298
DOI: https://doi.org/10.1007/BF01629437
Bibliographic databases:
UDC: 510.52+519.17
Language: Russian
Citation: D. Yu. Grigor'ev, “Two reductions of graph isomorphism to problems for polynomials”, Studies in constructive mathematics and mathematical logic. Part VIII, Zap. Nauchn. Sem. LOMI, 88, "Nauka", Leningrad. Otdel., Leningrad, 1979, 56–61; J. Soviet Math., 20:4 (1982), 2296–2298
Citation in format AMSBIB
\Bibitem{Gri79}
\by D.~Yu.~Grigor'ev
\paper Two reductions of graph isomorphism to problems for polynomials
\inbook Studies in constructive mathematics and mathematical logic. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 88
\pages 56--61
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=556219}
\zmath{https://zbmath.org/?q=an:0429.03021|0493.03016}
\transl
\jour J. Soviet Math.
\yr 1982
\vol 20
\issue 4
\pages 2296--2298
\crossref{https://doi.org/10.1007/BF01629437}
Linking options:
  • https://www.mathnet.ru/eng/znsl3102
  • https://www.mathnet.ru/eng/znsl/v88/p56
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024