Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 88, Pages 47–55 (Mi znsl3101)  

This article is cited in 2 scientific papers (total in 2 papers)

Time bounds of multidimensional Turing machines

D. Yu. Grigor'ev
Full-text PDF (556 kB) Citations (2)
Abstract: Two methods of simulating multidimensional multi-head Turing machines are suggested. The first method allows one to obtain the following two results. If a predicate $P$ can be recognized by a $m$-dimensional nondeterministic Turing machine within a time $t$ and space $L$ then it can be recognized
(1) by а $K$-dimensional ($k\leq m$) nondeterministic Turing machine within time $tL^{1/k-1/m+\varepsilon}$, so that the computation proceeds in а $k$-dimensional cube with the side $\leq L^{1/k+\varepsilon}$ (for any $\varepsilon>0$);
(2) by $(m+1)$-dimensional nondeterministic Turing machine within time $t\log^2L$ so that the computation proceeds in a $(m+1)$-dimensional cube with the side $\leq L^{1/(m+1)+\varepsilon}$ (for any $\varepsilon>0$).
These results can be interpretated in the following way. The computation on a nondeterministic Turing machine can be “packed” on account of some increasing the time (depending on a dimension) because initial trajectories of the heads could have been scattered.
Earlier [5] the author obtained a time-bound for simulating a deterministic multidimensional Turing machine by a machine of lower dimension. The method of [5] allows one to obtain the same bound for nondeterministic multidimensional Turing machines. The result (1) improves this nondeterministic bound.
The second method of simulation allows us to generalize to multidimensional case the well-known result due to Hopcroft, Paul, Valiant [1]. Namely, if a predicate $P$ can be recognized by a $m$-dimensional Turing machine within time $t\log^{1/m}t$ ($t(n)\geq n$ for every $n$) then $P$ can be recognized by a random access machine (RAM) within time $t$. Moreover one can make this RAM to satisfy the following restriction introduced by Slisenko [3]: the maximum length of a word in any register of RAM is less than $\log t+c$, where $t$ is the time complexity ($c$ depends only on the considered RAM).
English version:
Journal of Soviet Mathematics, 1982, Volume 20, Issue 4, Pages 2290–2295
DOI: https://doi.org/10.1007/BF01629436
Bibliographic databases:
UDC: 510.52
Language: Russian
Citation: D. Yu. Grigor'ev, “Time bounds of multidimensional Turing machines”, Studies in constructive mathematics and mathematical logic. Part VIII, Zap. Nauchn. Sem. LOMI, 88, "Nauka", Leningrad. Otdel., Leningrad, 1979, 47–55; J. Soviet Math., 20:4 (1982), 2290–2295
Citation in format AMSBIB
\Bibitem{Gri79}
\by D.~Yu.~Grigor'ev
\paper Time bounds of multidimensional Turing machines
\inbook Studies in constructive mathematics and mathematical logic. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 88
\pages 47--55
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=556218}
\zmath{https://zbmath.org/?q=an:0429.03020|0493.03015}
\transl
\jour J. Soviet Math.
\yr 1982
\vol 20
\issue 4
\pages 2290--2295
\crossref{https://doi.org/10.1007/BF01629436}
Linking options:
  • https://www.mathnet.ru/eng/znsl3101
  • https://www.mathnet.ru/eng/znsl/v88/p47
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024