Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 88, Pages 3–29 (Mi znsl3099)  

This article is cited in 10 scientific papers (total in 10 papers)

A coherence theorem for canonical morphisms in cartesian closed categories

A. A. Babaev, S. V. Solov'ev
Abstract: A coherence theorem states that any diagram of canonical maps from $A$ to $B$ is commutative, i.e. any two maps from $A$ to $B$ are equal if objects $A,B$ satisfy some natural condition.
We employ familiar translation ([2], [6]) of the canonical maps in cartesian closed category into derivations in ($\&,\supset$)-fragment of intuitionistic propositional calculus. Two maps are equal iff corresponding derivations are equivalent (i.e. they have the same normal form or their deductive terms are equivalent ([2], [5]).
We consider the following form of coherence theorem. If $S$ is a sequent and any propositional variable occurs no more than twice in $S$ then any two derivations of $S$ are equivalent. (It makes no difference to consider cut-free $L$-deductions or normal natural deductions (cf.[9]).)
We give two proofs of the coherence theorem. The first proof (due to A. Babajev) uses the natural deduction system and deductive terms.
The second proof (due to S. Solovaov) uses a reduction of the formula depth [7] and Kleene's results on permutability of inferences in Gentzen's calculi LK and LJ.
English version:
Journal of Soviet Mathematics, 1982, Volume 20, Issue 4, Pages 2263–2279
DOI: https://doi.org/10.1007/BF01629434
Bibliographic databases:
UDC: 510.64+510.66
Language: Russian
Citation: A. A. Babaev, S. V. Solov'ev, “A coherence theorem for canonical morphisms in cartesian closed categories”, Studies in constructive mathematics and mathematical logic. Part VIII, Zap. Nauchn. Sem. LOMI, 88, "Nauka", Leningrad. Otdel., Leningrad, 1979, 3–29; J. Soviet Math., 20:4 (1982), 2263–2279
Citation in format AMSBIB
\Bibitem{BabSol79}
\by A.~A.~Babaev, S.~V.~Solov'ev
\paper A~coherence theorem for canonical morphisms in cartesian closed categories
\inbook Studies in constructive mathematics and mathematical logic. Part~VIII
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 88
\pages 3--29
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=556216}
\zmath{https://zbmath.org/?q=an:0429.03037|0493.03032}
\transl
\jour J. Soviet Math.
\yr 1982
\vol 20
\issue 4
\pages 2263--2279
\crossref{https://doi.org/10.1007/BF01629434}
Linking options:
  • https://www.mathnet.ru/eng/znsl3099
  • https://www.mathnet.ru/eng/znsl/v88/p3
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024