|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 328, Pages 20–26
(Mi znsl305)
|
|
|
|
Dimensions of random recursive sets
A. G. Berlinkov Saint-Petersburg State Electrotechnical University
Abstract:
We prove a theorem that generalizes equality among packing, Hausdorff and upper and lower Mikowski dimensions for a general type of random recursive construction and apply it to the constructions with finite memory. Further we prove an upper bound on the packing dimension of certain random distribution funstions on $[0,1]$.
Received: 07.10.2005
Citation:
A. G. Berlinkov, “Dimensions of random recursive sets”, Probability and statistics. Part 9, Zap. Nauchn. Sem. POMI, 328, POMI, St. Petersburg, 2005, 20–26; J. Math. Sci. (N. Y.), 139:3 (2006), 6506–6509
Linking options:
https://www.mathnet.ru/eng/znsl305 https://www.mathnet.ru/eng/znsl/v328/p20
|
Statistics & downloads: |
Abstract page: | 191 | Full-text PDF : | 65 | References: | 35 |
|