Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1978, Volume 81, Pages 173–176 (Mi znsl3048)  

2.6. On the integrability of the derivative of conformal mapping

J. Brennan
English version:
Journal of Soviet Mathematics, 1984, Volume 26, Issue 5, Pages 2211–2213
DOI: https://doi.org/10.1007/BF01221542
Language: Russian
Citation: J. Brennan, “2.6. On the integrability of the derivative of conformal mapping”, Investigations on linear operators and function theory, 99 unsolved problems in linear and complex analysis, Zap. Nauchn. Sem. LOMI, 81, "Nauka", Leningrad. Otdel., Leningrad, 1978, 173–176; J. Soviet Math., 26:5 (1984), 2211–2213
Citation in format AMSBIB
\Bibitem{Bre78}
\by J.~Brennan
\paper 2.6. On the integrability of the derivative of conformal mapping
\inbook Investigations on linear operators and function theory
\bookinfo 99 unsolved problems in linear and complex analysis
\serial Zap. Nauchn. Sem. LOMI
\yr 1978
\vol 81
\pages 173--176
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3048}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 26
\issue 5
\pages 2211--2213
\crossref{https://doi.org/10.1007/BF01221542}
Linking options:
  • https://www.mathnet.ru/eng/znsl3048
  • https://www.mathnet.ru/eng/znsl/v81/p173
    Chapter
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024