Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 159–194 (Mi znsl303)  

This article is cited in 3 scientific papers (total in 3 papers)

Mappings of the sphere to a simply connected space

S. S. Podkorytov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (350 kB) Citations (3)
References:
Abstract: Fix an $m\in\mathbb N$, $m\ge2$. Let $Y$ be a simply connected pointed CW-complex, and let $B$ be a finite set of continuous mappings $a\colon S^m\to Y$ respecting the marked points. Let $\Gamma(a)\subset S^m\times Y$ be the graph of $a$, and let $[a]\in\pi_m(Y)$ be the homotopy class of $a$. Then for some $r\in\mathbb N$ depending on $m$ only, there exist a finite set $E\subset S^m\times Y$ and a mapping $k\colon E(r)=\{\,F\subset E:|F|\le r\,\}\to\pi_m(Y)$ such that for each $a\in B$ we have
$$ [a]=\sum_{F\in E(r):F\subset\Gamma(a)}k(F). $$
Received: 23.11.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 4, Pages 589–610
DOI: https://doi.org/10.1007/s10958-007-0441-6
Bibliographic databases:
UDC: 515.164
Language: Russian
Citation: S. S. Podkorytov, “Mappings of the sphere to a simply connected space”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 159–194; J. Math. Sci. (N. Y.), 140:4 (2007), 589–610
Citation in format AMSBIB
\Bibitem{Pod05}
\by S.~S.~Podkorytov
\paper Mappings of the sphere to a simply connected space
\inbook Geometry and topology. Part~9
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 329
\pages 159--194
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2215339}
\zmath{https://zbmath.org/?q=an:1151.55302}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 4
\pages 589--610
\crossref{https://doi.org/10.1007/s10958-007-0441-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845799840}
Linking options:
  • https://www.mathnet.ru/eng/znsl303
  • https://www.mathnet.ru/eng/znsl/v329/p159
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024