|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 159–194
(Mi znsl303)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Mappings of the sphere to a simply connected space
S. S. Podkorytov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Fix an $m\in\mathbb N$, $m\ge2$. Let $Y$ be a simply connected pointed CW-complex, and let $B$ be a finite set of continuous mappings $a\colon S^m\to Y$ respecting the marked points.
Let $\Gamma(a)\subset S^m\times Y$ be the graph of $a$, and let $[a]\in\pi_m(Y)$ be the homotopy class of $a$. Then for some $r\in\mathbb N$ depending on $m$ only, there exist
a finite set $E\subset S^m\times Y$ and a mapping $k\colon E(r)=\{\,F\subset E:|F|\le r\,\}\to\pi_m(Y)$ such that for each $a\in B$ we have
$$
[a]=\sum_{F\in E(r):F\subset\Gamma(a)}k(F).
$$
Received: 23.11.2005
Citation:
S. S. Podkorytov, “Mappings of the sphere to a simply connected space”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 159–194; J. Math. Sci. (N. Y.), 140:4 (2007), 589–610
Linking options:
https://www.mathnet.ru/eng/znsl303 https://www.mathnet.ru/eng/znsl/v329/p159
|
|