Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 118–146 (Mi znsl301)  

Maxwell equations and direction of electromagnetic field

R. Ya. Nizkii

Saint-Petersburg State University
References:
Abstract: A mapping $F\colon U\to\Lambda_2(M_0)$, $U\subset\mathbb R^4$, satisfying the Maxwell equations is regarded as the tensor of a certain electromagnetic field (EM-field) in vacuum. The EM-field is described on the basis of a special decomposition $F=e\omega+h(\ast\omega)$, where the mapping $\omega\colon U\to G^1$ is called the direction of the EM-field, and $e\colon U\to (0,+\infty)$ and $h\colon U\to\mathbb R$ are the electric and magnetic coefficients of the EM-field. The Maxwell equations are reformulated in terms of $\omega$, $e$, and $h$. EM-fields whose set of directions is a point or a one-dimensional subset of $G^1$ are considered.
Received: 17.06.2004
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 4, Pages 564–581
DOI: https://doi.org/10.1007/s10958-007-0439-0
Bibliographic databases:
UDC: 514.7, 514.271.21.21.17
Language: Russian
Citation: R. Ya. Nizkii, “Maxwell equations and direction of electromagnetic field”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 118–146; J. Math. Sci. (N. Y.), 140:4 (2007), 564–581
Citation in format AMSBIB
\Bibitem{Niz05}
\by R.~Ya.~Nizkii
\paper Maxwell equations and direction of electromagnetic field
\inbook Geometry and topology. Part~9
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 329
\pages 118--146
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2215337}
\zmath{https://zbmath.org/?q=an:1151.78314}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 4
\pages 564--581
\crossref{https://doi.org/10.1007/s10958-007-0439-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845801682}
Linking options:
  • https://www.mathnet.ru/eng/znsl301
  • https://www.mathnet.ru/eng/znsl/v329/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024