Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 107–117 (Mi znsl300)  

This article is cited in 2 scientific papers (total in 2 papers)

Geometry of finite-dimensional normed spaces and continuous functions on the Euclidean sphere

V. V. Makeev

Saint-Petersburg State University
Full-text PDF (195 kB) Citations (2)
References:
Abstract: Let $\mathbb R^n$ be the $n$-dimensional Euclidean space, and let $\|\cdot\|$ be a norm in $\mathbb R^n$. Two lines $\ell_1$ and $\ell_2$ in $\mathbb R^n$ are said to be $\|\cdot\|$-orthogonal if their $\|\cdot\|$-unit directional vectors $\mathbf e_1$ and $\mathbf e_2$ satisfy $\|\mathbf e_1+\mathbf e_2\|=\|\mathbf e_1-\mathbf e_2\|$. It is proved that for any two norms $\|\cdot\|$ and $\|\cdot\|'$ in $\mathbb R^n$ there are $n$ lines $\ell_1,\ldots,\ell_n$ that are $\|\cdot\|$- and $\|\cdot\|'$-orthogonal simultaneously. Let $f\colon S^{n-1}\to\mathbb R$ be a continuous function on the unit sphere $S^{n-1}\subset \mathbb R^n$ with center $O$. It is proved that there exists an $(n-1)$-cube $C$ centered at $O$, inscribed in $S^{n-1}$, and such that all sums of values of $f$ at the vertices of $(n-3)$-faces of $C$ are pairwise equal. If the function $f$ is even, then there exists an $n$-cube with the same properties. Furthermore, there exists an orthonormal basis $\mathbf e_1,\ldots,\mathbf e_n$ such that for $1\le i<j\le n$ we have $f\left(\frac{\mathbf e_i+\mathbf e_j}{\sqrt 2}\right)=f\left(\frac{\mathbf e_i-\mathbf e_j}{\sqrt2}\right)$.
Received: 01.03.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 4, Pages 558–563
DOI: https://doi.org/10.1007/s10958-007-0438-1
Bibliographic databases:
UDC: 514.172
Language: Russian
Citation: V. V. Makeev, “Geometry of finite-dimensional normed spaces and continuous functions on the Euclidean sphere”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 107–117; J. Math. Sci. (N. Y.), 140:4 (2007), 558–563
Citation in format AMSBIB
\Bibitem{Mak05}
\by V.~V.~Makeev
\paper Geometry of finite-dimensional normed spaces and continuous functions on the Euclidean sphere
\inbook Geometry and topology. Part~9
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 329
\pages 107--117
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl300}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2215336}
\zmath{https://zbmath.org/?q=an:1151.46304}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 4
\pages 558--563
\crossref{https://doi.org/10.1007/s10958-007-0438-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845780161}
Linking options:
  • https://www.mathnet.ru/eng/znsl300
  • https://www.mathnet.ru/eng/znsl/v329/p107
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :63
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024