Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 92–106 (Mi znsl299)  

This article is cited in 8 scientific papers (total in 8 papers)

Theorems on equipartition of a continuous mass distribution

V. V. Makeev

Saint-Petersburg State University
Full-text PDF (232 kB) Citations (8)
References:
Abstract: Here are three samples of results.
Let $\mathbf m$ be a finite continuous mass distribution (an FCMD) in $\mathbb R^2$, and let $\ell=\{\ell_1,\dots,\ell_5\subset\mathbb R^2\}$ be 5 rays with common endpoint such that the sum of any two adjacent angles between them is at most $\pi$. Then $\mathbf m$ can be sibdivided into 5 parts at any prescribed ratio by an affine image of $\ell$.
For each FCMD $\mathbf m$ in $\mathbb R^n$ there exist $n$ mutually orthogonal hyperplanes any two of which subdivide $\mathbf m$ into 4 equal parts.
For any two FCMD's $\mathbf m_1$ and $\mathbf m_2$ in $\mathbb R^n$ with common center of symmetry $O$ there exist $n$ hyperplanes through $O$ any two of which subdivide both $\mathbf m_1$ and $\mathbf m_2$ into 4 equal parts.
Received: 01.03.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 4, Pages 551–557
DOI: https://doi.org/10.1007/s10958-007-0437-2
Bibliographic databases:
UDC: 514.172
Language: Russian
Citation: V. V. Makeev, “Theorems on equipartition of a continuous mass distribution”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 92–106; J. Math. Sci. (N. Y.), 140:4 (2007), 551–557
Citation in format AMSBIB
\Bibitem{Mak05}
\by V.~V.~Makeev
\paper Theorems on equipartition of a~continuous mass distribution
\inbook Geometry and topology. Part~9
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 329
\pages 92--106
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl299}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2215335}
\zmath{https://zbmath.org/?q=an:1151.52304}
\elib{https://elibrary.ru/item.asp?id=13006135}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 4
\pages 551--557
\crossref{https://doi.org/10.1007/s10958-007-0437-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845771812}
Linking options:
  • https://www.mathnet.ru/eng/znsl299
  • https://www.mathnet.ru/eng/znsl/v329/p92
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024