Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 88–91 (Mi znsl298)  

This article is cited in 8 scientific papers (total in 8 papers)

Equilateral simplices in normed 4-space

V. V. Makeev

Saint-Petersburg State University
Full-text PDF (134 kB) Citations (8)
References:
Abstract: Let $E$ be a 4-dimensional real normed space, $x\ge3/4$ a positive number, and $P\subset E$ a 3-plane. It is proved that there exist 4 equidistant points $A_1$, $A_2$, $A_3$, $A_4\in P$ and a point $A_5\in E$ such that $\|A_5A_i\|=x\cdot\|A_1A_2\|$ for $i=1,2,3,4$. In particular, $E$ contains an equilateral simplex.
Received: 25.12.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 4, Pages 548–550
DOI: https://doi.org/10.1007/s10958-007-0436-3
Bibliographic databases:
UDC: 514.179
Language: Russian
Citation: V. V. Makeev, “Equilateral simplices in normed 4-space”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 88–91; J. Math. Sci. (N. Y.), 140:4 (2007), 548–550
Citation in format AMSBIB
\Bibitem{Mak05}
\by V.~V.~Makeev
\paper Equilateral simplices in normed 4-space
\inbook Geometry and topology. Part~9
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 329
\pages 88--91
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl298}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2215334}
\zmath{https://zbmath.org/?q=an:1151.52305}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 4
\pages 548--550
\crossref{https://doi.org/10.1007/s10958-007-0436-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845756803}
Linking options:
  • https://www.mathnet.ru/eng/znsl298
  • https://www.mathnet.ru/eng/znsl/v329/p88
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024