|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 88–91
(Mi znsl298)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Equilateral simplices in normed 4-space
V. V. Makeev Saint-Petersburg State University
Abstract:
Let $E$ be a 4-dimensional real normed space, $x\ge3/4$ a positive number, and $P\subset E$ a 3-plane. It is proved that there exist 4 equidistant points $A_1$, $A_2$, $A_3$, $A_4\in P$
and a point $A_5\in E$ such that $\|A_5A_i\|=x\cdot\|A_1A_2\|$ for $i=1,2,3,4$.
In particular, $E$ contains an equilateral simplex.
Received: 25.12.2005
Citation:
V. V. Makeev, “Equilateral simplices in normed 4-space”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 88–91; J. Math. Sci. (N. Y.), 140:4 (2007), 548–550
Linking options:
https://www.mathnet.ru/eng/znsl298 https://www.mathnet.ru/eng/znsl/v329/p88
|
|