Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 87, Pages 104–124 (Mi znsl2975)  

This article is cited in 2 scientific papers (total in 2 papers)

The problem of stability for J. Marcinkiewicz's theorem

N. A. Sapogov
Full-text PDF (826 kB) Citations (2)
Abstract: In this paper we investigate stability of the well known theorem due to J. Marciniciewicz asserting that $\exp P(t)$ where $P(t)$ is a polynomial can be a characteristic function only when the degree of $P(t)$ is $\leq2$. Our main result is given by the following theorem.
Theorem. {\it Let $|\exp P_{2n}(t)-\varphi(t)|\leq\varepsilon,\quad t\in[-T,T]$, where
$$ P_{2n}(t)=-\frac12t^2+\sum_{k=2}^n a_{2k}t^{2k}, \quad a_{2k}\in R^1,\quad|a_{2k}|\leq H,\quad k=2,3,\dots,n,\quad a_{2n}<0 $$
$\varphi(t)=\varphi(-t)$ – even characteristic function. Then
$$ -a_{2n}\leq\frac{k_1\cdot H^{1-1/n}}{(\log1/\varepsilon_2)^{1-1/n}}+ \frac{k_2\cdot H^{1+1/n}}{(\log1/\varepsilon_2)^{1/n}}, $$
if $\varepsilon_2=k[\varepsilon(\log T+1)+T^{-1}(\log T)^{1/2n}]$ is sufficient small; $K$ is an absolute constant, $K_1$ and $K_2$ depend on $n$ only.}
English version:
Journal of Soviet Mathematics, 1981, Volume 17, Issue 6, Pages 2289–2306
DOI: https://doi.org/10.1007/BF01085927
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: N. A. Sapogov, “The problem of stability for J. Marcinkiewicz's theorem”, Studies in mathematical statistics. Part 3, Zap. Nauchn. Sem. LOMI, 87, "Nauka", Leningrad. Otdel., Leningrad, 1979, 104–124; J. Soviet Math., 17:6 (1981), 2289–2306
Citation in format AMSBIB
\Bibitem{Sap79}
\by N.~A.~Sapogov
\paper The problem of stability for J.~Marcinkiewicz's theorem
\inbook Studies in mathematical statistics. Part~3
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 87
\pages 104--124
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=554605}
\zmath{https://zbmath.org/?q=an:0417.60022|0467.60027}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 17
\issue 6
\pages 2289--2306
\crossref{https://doi.org/10.1007/BF01085927}
Linking options:
  • https://www.mathnet.ru/eng/znsl2975
  • https://www.mathnet.ru/eng/znsl/v87/p104
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024