|
Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 87, Pages 104–124
(Mi znsl2975)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
The problem of stability for J. Marcinkiewicz's theorem
N. A. Sapogov
Abstract:
In this paper we investigate stability of the well known theorem due to J. Marciniciewicz asserting that
$\exp P(t)$ where $P(t)$ is a polynomial can be a characteristic function only when the degree of $P(t)$ is $\leq2$. Our main result is given by the following theorem.
Theorem. {\it Let
$|\exp P_{2n}(t)-\varphi(t)|\leq\varepsilon,\quad t\in[-T,T]$, where
$$
P_{2n}(t)=-\frac12t^2+\sum_{k=2}^n a_{2k}t^{2k},
\quad a_{2k}\in R^1,\quad|a_{2k}|\leq H,\quad k=2,3,\dots,n,\quad a_{2n}<0
$$
$\varphi(t)=\varphi(-t)$ – even characteristic function. Then
$$
-a_{2n}\leq\frac{k_1\cdot H^{1-1/n}}{(\log1/\varepsilon_2)^{1-1/n}}+
\frac{k_2\cdot H^{1+1/n}}{(\log1/\varepsilon_2)^{1/n}},
$$
if $\varepsilon_2=k[\varepsilon(\log T+1)+T^{-1}(\log T)^{1/2n}]$ is sufficient small; $K$ is an absolute constant, $K_1$ and $K_2$ depend on $n$ only.}
Citation:
N. A. Sapogov, “The problem of stability for J. Marcinkiewicz's theorem”, Studies in mathematical statistics. Part 3, Zap. Nauchn. Sem. LOMI, 87, "Nauka", Leningrad. Otdel., Leningrad, 1979, 104–124; J. Soviet Math., 17:6 (1981), 2289–2306
Linking options:
https://www.mathnet.ru/eng/znsl2975 https://www.mathnet.ru/eng/znsl/v87/p104
|
Statistics & downloads: |
Abstract page: | 156 | Full-text PDF : | 65 |
|