Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 87, Pages 74–78 (Mi znsl2972)  

Once more on stability estimation in the problem of reconstructing the additive type of a distribution

L. B. Klebanov
Abstract: Let $X$ and $Y$ be two random vectors with characteristic functions $\varphi(t)$ and $\psi(t)$, $t=(t_1,\dots,t_m)\in R^m$, respectively. The distance $\nu(X,Y)$ is defined by
$$ \nu(X,Y)\inf_{T>0}\max\biggl\{\sup_{|t_1|\leq T}|\varphi(t)-\psi(t)|,1/T\biggr\}. $$
Suppose that for two distribution functions $F$ and $F_1$ of a random variable $x_i$ the corresponding distributions $H$ and $H_1$ of the maximum invariant statistic $Y=(x_2-x_1,\dots,x_n-x_1)$ of the sample $(x_1,\dots,x_n)$ are $\varepsilon$-close in sense of $\nu(Y/H,Y/H_1)\leq\varepsilon$. Then for some $\theta\in R^1$
$$ \nu(x_1|_F, x_1+\theta|_{F_1})\leq c\cdot\max(\varepsilon^{1-(2k-1)\lambda}, \varepsilon_\lambda,1/B_{m+1}^{(\lambda)}(\varepsilon)) $$
where $B_{m+1}^{(\lambda)}(\varepsilon)$ is defined by (2).
English version:
Journal of Soviet Mathematics, 1981, Volume 17, Issue 6, Pages 2265–2269
DOI: https://doi.org/10.1007/BF01085924
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: L. B. Klebanov, “Once more on stability estimation in the problem of reconstructing the additive type of a distribution”, Studies in mathematical statistics. Part 3, Zap. Nauchn. Sem. LOMI, 87, "Nauka", Leningrad. Otdel., Leningrad, 1979, 74–78; J. Soviet Math., 17:6 (1981), 2265–2269
Citation in format AMSBIB
\Bibitem{Kle79}
\by L.~B.~Klebanov
\paper Once more on stability estimation in the problem of reconstructing the additive type of a~distribution
\inbook Studies in mathematical statistics. Part~3
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 87
\pages 74--78
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2972}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=554602}
\zmath{https://zbmath.org/?q=an:0417.60018|0467.60019}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 17
\issue 6
\pages 2265--2269
\crossref{https://doi.org/10.1007/BF01085924}
Linking options:
  • https://www.mathnet.ru/eng/znsl2972
  • https://www.mathnet.ru/eng/znsl/v87/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024