Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 67–78 (Mi znsl296)  

This article is cited in 6 scientific papers (total in 6 papers)

Asphericity of shadows of a convex body

V. V. Makeev

Saint-Petersburg State University
Full-text PDF (218 kB) Citations (6)
References:
Abstract: A shadow is a parallel projection $F$ of a body $K$ to a plane. $F$ is $\epsilon$-aspheric if the boundary $\partial F$ lies in a circular ring with center at $O$ and ratio of radii equal to $1+\epsilon$. $F$ is $\epsilon$-aspheric for a part of $\alpha$ if the same is true for the part of $\partial F$ lying inside an angle of $2\alpha\pi$ with vertex at $O$ (or within the union of two vertical angles of $\alpha\pi$ if $K$ is centrally symmetric). It is proved that each convex body $K\subset\mathbb R^3$ has a $(\sqrt 2-1)$-aspheric shadow and a shadow $(\sec\pi/5-1)$-aspheric for a part of 4/5. If $K$ is centrally symmetric, then $K$ has a $(2/\sqrt3-1)$-aspheric shadow and a shadow $(\sec\pi/7-1)$-aspheric for a part of 6/7.
Received: 01.03.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 4, Pages 535–541
DOI: https://doi.org/10.1007/s10958-007-0434-5
Bibliographic databases:
UDC: 514.172
Language: Russian
Citation: V. V. Makeev, “Asphericity of shadows of a convex body”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 67–78; J. Math. Sci. (N. Y.), 140:4 (2007), 535–541
Citation in format AMSBIB
\Bibitem{Mak05}
\by V.~V.~Makeev
\paper Asphericity of shadows of a~convex body
\inbook Geometry and topology. Part~9
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 329
\pages 67--78
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2215332}
\zmath{https://zbmath.org/?q=an:1151.52302}
\elib{https://elibrary.ru/item.asp?id=13006132}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 4
\pages 535--541
\crossref{https://doi.org/10.1007/s10958-007-0434-5}
\elib{https://elibrary.ru/item.asp?id=13548279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845731795}
Linking options:
  • https://www.mathnet.ru/eng/znsl296
  • https://www.mathnet.ru/eng/znsl/v329/p67
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024