Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 84, Pages 185–210 (Mi znsl2942)  

This article is cited in 2 scientific papers (total in 2 papers)

Some model nonstationary systems in the theory of non-Newtonian fluids. II

A. P. Oskolkov
Abstract: For the non-stationary quasi-linear system
\begin{gather*} \frac{\partial\bar{v}}{\partial{t}}+v_k\frac{\partial{v}}{\partial{x_k}}+\lambda\biggl[\frac{\partial^2{\bar{v}}}{\partial t^2}+v_{kt}\bar{v}_{x_k}+v_k\frac{\partial^2\bar{v}}{\partial t\partial x_k}\biggr]-\nu\Delta\bar{v}-\varkappa\frac{\partial\Delta\bar v}{\partial t}+\biggl(1+\lambda\frac{\partial}{\partial t}\biggr)\operatorname{grad}p=\bar{F}, \\ \operatorname{div}\bar{v}=0 \end{gather*}
the local theorems of existence and uniqueness of generalized solutions with a finite energy integral
$$ \max_{0\leq t\leq T}\int_\Omega(\bar{v}^2_x+\bar{v}^2_t)\,dx +\iint_{Q_T}\bar{v}^2_{xt}\,dx\,dt<+\infty; $$
are proved. Different variants of regularized systems are constructed, for which the generalized solution exists “in the large”.
English version:
Journal of Soviet Mathematics, 1983, Volume 21, Issue 3, Pages 383–399
DOI: https://doi.org/10.1007/BF01660594
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. P. Oskolkov, “Some model nonstationary systems in the theory of non-Newtonian fluids. II”, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Zap. Nauchn. Sem. LOMI, 84, "Nauka", Leningrad. Otdel., Leningrad, 1979, 185–210; J. Soviet Math., 21:3 (1983), 383–399
Citation in format AMSBIB
\Bibitem{Osk79}
\by A.~P.~Oskolkov
\paper Some model nonstationary systems in the theory of non-Newtonian fluids.~II
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~11
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 84
\pages 185--210
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=557035}
\zmath{https://zbmath.org/?q=an:0414.76004|0515.76009}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 21
\issue 3
\pages 383--399
\crossref{https://doi.org/10.1007/BF01660594}
Linking options:
  • https://www.mathnet.ru/eng/znsl2942
  • https://www.mathnet.ru/eng/znsl/v84/p185
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024