|
Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 84, Pages 131–146
(Mi znsl2939)
|
|
|
|
This article is cited in 11 scientific papers (total in 13 papers)
On limiting regime for modified Navier–Stokes equations in three-dimensional space
O. A. Ladyzhenskaya
Abstract:
The description of the limit-set $\mathfrak{M}_R$ (when $t\to\infty$) for all solutions of the system
$$
\frac{\partial\vec v}{\partial t}-\nu\Delta\vec{v}+\sum_{k=1}^3
v_k\frac{\partial\vec{v}}{\partial x_k}+\operatorname{grad}{p}
=\vec{f},
\quad\operatorname{div}\vec{v}=0,
$$
where $\nu=\mu_0+\mu_1\int_\Omega\vec{v}^{\,2}_x(x,t)\,dx$, $\mu_i=\operatorname{const}>0$ and $\Omega$ is bounded, which start at $t=0$ from the points of the ball
$K_R=\{\vec{a}(x):\vec{a}(x)\in\overset\circ{J}(\Omega),\|\vec{a}\|_{2,\Omega}\leq{R}\}$ is given. Particullary, it is proved, that the semi-group $V_t$, $t\geq0$, corresponding to this problem, may be extended
to the group $V_t$, $t\in\mathbb R^1$, which has some interesting properties.
Citation:
O. A. Ladyzhenskaya, “On limiting regime for modified Navier–Stokes equations in three-dimensional space”, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Zap. Nauchn. Sem. LOMI, 84, "Nauka", Leningrad. Otdel., Leningrad, 1979, 131–146; J. Soviet Math., 21:3 (1983), 345–356
Linking options:
https://www.mathnet.ru/eng/znsl2939 https://www.mathnet.ru/eng/znsl/v84/p131
|
Statistics & downloads: |
Abstract page: | 238 | Full-text PDF : | 87 |
|