Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 84, Pages 3–6 (Mi znsl2928)  

This article is cited in 21 scientific papers (total in 21 papers)

Stability and uniqueness of the solution of the inverse seismo-kinematic problem in multidimentional case

G. Ya. Beil'kin
Abstract: The following kinematic problem is considered. Let $M$ be a compact $\nu$-dimensional domain with the metric $ds^2=g_{ij}dx^idx^j$. Given the function $\tau(\xi,\eta)=\int_{K_{\xi,\eta}}n\,ds$, a new metric $du=nds$ is constructed. $K_{\xi,\eta}$ is the geodesic connecting $\xi$ and $\eta$ in metric $du$; $\xi\eta\in\partial M$. The uniqueness of the solution is proved and the estimate
$$ \int_M(n_2-n_1)(n_2^{\nu-1}-n_1^{\nu-1})\,dx^1\wedge\dots\wedge dx^\nu \leq\int_{\partial M\times\partial M}\Omega^{\tau_1,\tau_2} $$
is obtained.
Refractive indices $n_1, n_2$ are the solutions of the inverse kinematic problem corresponding to functions $\tau_1,\tau_2$; $\Omega^{\tau_1,\tau_2}$ is the differential form on $\partial{M}\times\partial{M}$.
$$ \Omega^{\tau_1,\tau_2}=-\frac{\Gamma(\nu/2)(-1)^{(\nu-1)(\nu-2)/2}} {2\pi^{\nu/2}(\nu-1)!} \sum_{\alpha+\beta=\nu-2}D_\eta\tau\wedge D_\xi\tau(D_\eta D_\xi\tau_1)^\alpha\wedge(D_\tau D_\xi\tau_2)^\beta, $$
$\tau=\tau_2-\tau_1$, $D_\xi=d\xi^i\partial/\partial\xi^i$, $D_\eta=d\eta^i\partial/\partial\eta^i$, $i=1,\dots,\nu-1$.
English version:
Journal of Soviet Mathematics, 1983, Volume 21, Issue 3, Pages 251–254
DOI: https://doi.org/10.1007/BF01660580
Bibliographic databases:
UDC: 550.344
Language: Russian
Citation: G. Ya. Beil'kin, “Stability and uniqueness of the solution of the inverse seismo-kinematic problem in multidimentional case”, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Zap. Nauchn. Sem. LOMI, 84, "Nauka", Leningrad. Otdel., Leningrad, 1979, 3–6; J. Soviet Math., 21:3 (1983), 251–254
Citation in format AMSBIB
\Bibitem{Bei79}
\by G.~Ya.~Beil'kin
\paper Stability and uniqueness of the solution of the inverse seismo-kinematic problem in multidimentional case
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~11
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 84
\pages 3--6
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2928}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=557021}
\zmath{https://zbmath.org/?q=an:0414.53012|0507.53018}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 21
\issue 3
\pages 251--254
\crossref{https://doi.org/10.1007/BF01660580}
Linking options:
  • https://www.mathnet.ru/eng/znsl2928
  • https://www.mathnet.ru/eng/znsl/v84/p3
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024