|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 329, Pages 5–13
(Mi znsl291)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Remarks on Chebyshev coordinates
Yu. D. Buragoa, S. V. Ivanova, S. G. Malevb a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University
Abstract:
Some results on the existence of global Chebyshev coordinates on complete Riemannian manifolds or, more generally, on Aleksandrov surfaces are proved. For instance, if both the positive part and the negative part of the integral curvature are less than $2\pi$, then there exist global Chebyshev coordinates on $M$. Such coordinates help one to get bi-Lipschitz maps
between surfaces.
Received: 20.12.2005
Citation:
Yu. D. Burago, S. V. Ivanov, S. G. Malev, “Remarks on Chebyshev coordinates”, Geometry and topology. Part 9, Zap. Nauchn. Sem. POMI, 329, POMI, St. Petersburg, 2005, 5–13; J. Math. Sci. (N. Y.), 140:4 (2007), 497–501
Linking options:
https://www.mathnet.ru/eng/znsl291 https://www.mathnet.ru/eng/znsl/v329/p5
|
|