Abstract:
In the paper the main attention is paid to conditions on algebras from a given variety which provide coincidence of their algebraic geometries. The main part here play the notions mentioned in the title of the paper.
Citation:
B. I. Plotkin, “Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras”, Problems in the theory of representations of algebras and groups. Part 13, Zap. Nauchn. Sem. POMI, 330, POMI, St. Petersburg, 2006, 201–222; J. Math. Sci. (N. Y.), 140:5 (2007), 716–728
\Bibitem{Plo06}
\by B.~I.~Plotkin
\paper Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras
\inbook Problems in the theory of representations of algebras and groups. Part~13
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 330
\pages 201--222
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2253574}
\zmath{https://zbmath.org/?q=an:1139.08004}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 5
\pages 716--728
\crossref{https://doi.org/10.1007/s10958-007-0011-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846166069}
Linking options:
https://www.mathnet.ru/eng/znsl286
https://www.mathnet.ru/eng/znsl/v330/p201
This publication is cited in the following 6 articles:
V. A. Roman'kov, “Algorithmic theory of solvable groups”, PDM, 2021, no. 52, 16–64
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures”, J. Math. Sci., 257:6 (2021), 797–813
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VI. Geometric equivalence”, Algebra and Logic, 56:4 (2017), 281–294
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Universal geometrical equivalence of the algebraic structures of common signature”, Siberian Math. J., 58:5 (2017), 801–812
A. G. Pinus, “The algebraic and logical geometries of universal algebras (a unified approach)”, J. Math. Sci., 185:3 (2012), 473–483
Plotkin B., “Some Results and Problems Related to Universal Algebraic Geometry”, Int. J. Algebr. Comput., 17:5-6 (2007), 1133–1164