|
Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 55, Pages 175–184
(Mi znsl2848)
|
|
|
|
This article is cited in 4 scientific papers (total in 5 papers)
Asymptotic behavior of statistical estimates of the shift parameter for samples with unbounded density
I. A. Ibragimov, R. Z. Khas'minskii
Abstract:
This paper is a continuation of author's paper [I]. Like [I] we consider here a sample $(x_1,\dots,x_n)$ with common density $f(x-\Theta)$ depending on unknown parameter $\Theta$. It is supposed that $f$ is sufficiently
smooth exept the finite set of points of singularity of the form (1.1).
The main result asserts that for Bayesian estimates $\hat{t}_n$ random variables $n^{1/1+\alpha}(\hat{t}_n-\Theta)$ has a proper limit distribution where $\alpha$ is from (1.1).
Citation:
I. A. Ibragimov, R. Z. Khas'minskii, “Asymptotic behavior of statistical estimates of the shift parameter for samples with unbounded density”, Problems of the theory of probability distributions. Part 3, Zap. Nauchn. Sem. LOMI, 55, "Nauka", Leningrad. Otdel., Leningrad, 1976, 175–184; J. Soviet Math., 16:2 (1981), 1035–1041
Linking options:
https://www.mathnet.ru/eng/znsl2848 https://www.mathnet.ru/eng/znsl/v55/p175
|
Statistics & downloads: |
Abstract page: | 209 | Full-text PDF : | 69 |
|