Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 55, Pages 15–25 (Mi znsl2839)  

This article is cited in 4 scientific papers (total in 4 papers)

The stability of solutions of the functional equations connected with characterization theorems for probability distributions

N. A. Sapogov
Full-text PDF (594 kB) Citations (4)
Abstract: The present paper contains some results on the solutions $\Psi_j(x)$ of the functional inequality
\begin{equation} \biggl|\sum\Psi_j(a^T_jt)\biggr|\leq\varepsilon, \tag{1} \end{equation}
where $a^T_j=(a_{1j},a_{2j},\dots,a_{pj})\in\mathbb{R}^p$ all the coefficients $a_{ij}$ are constants, $t=(t_1,t_2,\dots,t_p)\in\mathbb{R}^p$, $a_j^Tt=\sum_{i=1}^p a_{ij}t_i$, $p\geq2$, the relation (1) holds for all $t_j\in\mathbb{R}^1$, $j=1,2,\dots,n$. Inequality (1) is connected with certain characterization theorem in theory of probability and statistics. For the sake of simplicity we suppose that $\Psi_j(x)$ are continuous functions, $x\in\mathbb{R}^1$. We obtain the following main results
Theorem. {\it Let (1) holds, $n\ge 1$, $p=2$, $\Delta_{kj}=a_{1j}a_{2k}-a_{1k}a_{2j}\neq0$ for $j\ne k$, $\varepsilon>0$ is an arbitrary positive number. Then there exist polynomials $P_{n,j}$, $j=1,\dots,n$, such that
$$ \biggl|\Psi_j(x)-P_{n,j}(x)\biggr|\le 4^{n-2}\varepsilon $$
for all $x\in\mathbb{R}^1$, $j=1,2,\dots,n$. The degrees of $P_{n,j}(x)$ are $\leq n-2$.}
The particular case $n=3$, $p=2$ is of some interest and was investigated in more details.
English version:
Journal of Soviet Mathematics, 1981, Volume 16, Issue 2, Pages 925–933
DOI: https://doi.org/10.1007/BF01676137
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: N. A. Sapogov, “The stability of solutions of the functional equations connected with characterization theorems for probability distributions”, Problems of the theory of probability distributions. Part 3, Zap. Nauchn. Sem. LOMI, 55, "Nauka", Leningrad. Otdel., Leningrad, 1976, 15–25; J. Soviet Math., 16:2 (1981), 925–933
Citation in format AMSBIB
\Bibitem{Sap76}
\by N.~A.~Sapogov
\paper The stability of solutions of the functional equations connected with characterization theorems for probability distributions
\inbook Problems of the theory of probability distributions. Part~3
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 55
\pages 15--25
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2839}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=404904}
\zmath{https://zbmath.org/?q=an:0347.60012|0462.60017}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 16
\issue 2
\pages 925--933
\crossref{https://doi.org/10.1007/BF01676137}
Linking options:
  • https://www.mathnet.ru/eng/znsl2839
  • https://www.mathnet.ru/eng/znsl/v55/p15
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024