Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 330, Pages 36–76 (Mi znsl278)  

This article is cited in 34 scientific papers (total in 34 papers)

Structure of Chevalley groups: the proof from the Book

N. A. Vavilova, M. R. Gavrilovichb, S. I. Nikolenkoc

a Saint-Petersburg State University
b University of Oxford
c St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: We describe and compare different geometric proofs of the main structure theorems for Chevalley groups over commutative rings. To warm up we sketch the known geometric proofs, published by I. Z. Golubchik, N. A. Vavilov, A. V. Stepanov and E. B. Plotkin, such as the $A_2$ and $A_3$ proofs for classical groups, $A_5$ and $D_5$ proofs for $E_6$; $A_7$ and $D_6$ proofs for $E_7$, and $D_8$ proof for $E_8$. After that we expound in more details the $A_2$ proofs for exceptional groups of types $F_4$, $E_6$ and $E_7$, based on multiple commutation. This new proof, the Proof from the Book, gives better bounds than any previously known. Moreover, unlike all previously known proofs it does not use results for fields, factorisation modulo radical, or any specific information concerning structure constants and equations defining exceptional Chevalley groups.
Received: 10.12.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 140, Issue 5, Pages 626–645
DOI: https://doi.org/10.1007/s10958-007-0003-y
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book”, Problems in the theory of representations of algebras and groups. Part 13, Zap. Nauchn. Sem. POMI, 330, POMI, St. Petersburg, 2006, 36–76; J. Math. Sci. (N. Y.), 140:5 (2007), 626–645
Citation in format AMSBIB
\Bibitem{VavGavNik06}
\by N.~A.~Vavilov, M.~R.~Gavrilovich, S.~I.~Nikolenko
\paper Structure of Chevalley groups: the proof from the Book
\inbook Problems in the theory of representations of algebras and groups. Part~13
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 330
\pages 36--76
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl278}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2253566}
\zmath{https://zbmath.org/?q=an:1162.20032}
\elib{https://elibrary.ru/item.asp?id=9161492}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 5
\pages 626--645
\crossref{https://doi.org/10.1007/s10958-007-0003-y}
\elib{https://elibrary.ru/item.asp?id=13534553}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846125905}
Linking options:
  • https://www.mathnet.ru/eng/znsl278
  • https://www.mathnet.ru/eng/znsl/v330/p36
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:883
    Full-text PDF :364
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024