Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1974, Volume 47, Pages 159–163 (Mi znsl2773)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

On the algebraic complexity of a pair of bilinear forms

D. Yu. Grigor'ev
Full-text PDF (327 kB) Citations (1)
Abstract: The problem mentioned in the title is reduced to the evaluation of the range of a set of matrices. The range of matrices $A_1,\dots,A_l$, (denoted by $rg(A_1,\dots,A_l)$,) is the least number of one-dimensional matrices, whose linear combinations represent all $A_i$`s For an operator $A$ in $\mathbb C^n$ there exist a space и and a diagonal operator $B$ with $(A-B)\mathbb C^n\subseteq V$; the minimum of dimensions of such $A_i$`s is denoted by $d(V)$.
Theorem. {\it $rg(E,A)=n+d(A)$, $E$ – denotes the identical matrice.
Bibliographic databases:
Document Type: Article
UDC: 51.01:518.5
Language: Russian
Citation: D. Yu. Grigor'ev, “On the algebraic complexity of a pair of bilinear forms”, Investigations on linear operators and function theory. Part V, Zap. Nauchn. Sem. LOMI, 47, "Nauka", Leningrad. Otdel., Leningrad, 1974, 159–163
Citation in format AMSBIB
\Bibitem{Gri74}
\by D.~Yu.~Grigor'ev
\paper On the algebraic complexity of a~pair of bilinear forms
\inbook Investigations on linear operators and function theory. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1974
\vol 47
\pages 159--163
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=453768}
\zmath{https://zbmath.org/?q=an:0363.15005}
Linking options:
  • https://www.mathnet.ru/eng/znsl2773
  • https://www.mathnet.ru/eng/znsl/v47/p159
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024