|
Zapiski Nauchnykh Seminarov LOMI, 1974, Volume 47, Pages 155–158
(Mi znsl2772)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short communications
Root lineals and characteristic functions of contractions
M. S. Brodskii, Ya. S. Shvartsman
Abstract:
It is proved that $\operatorname{dim}\operatorname{Ker}(T-\lambda I)^n=\operatorname{dim}\operatorname{Ker}K_n(\lambda)$, where $T$ is a contraction of the Hilbert space,
$$
K_n(\lambda)
=\begin{pmatrix}
\theta^{*}(\bar\lambda)&0&\dots&0\\
\frac1{1!}\theta^{*(1)}(\bar\lambda)&\theta^{*}(\bar\lambda)&\dots&0\\
\frac1{(n-1)!}\theta^{*(n-1)}(\bar\lambda)&\frac1{(n-2)!}\theta^{*(n-2)}(\bar\lambda)&\dots&
\theta^{*}(\bar\lambda)
\end{pmatrix},
$$
$\theta$ – the characteristic function of the operator collegation generated by the contraction $T$.
Citation:
M. S. Brodskii, Ya. S. Shvartsman, “Root lineals and characteristic functions of contractions”, Investigations on linear operators and function theory. Part V, Zap. Nauchn. Sem. LOMI, 47, "Nauka", Leningrad. Otdel., Leningrad, 1974, 155–158
Linking options:
https://www.mathnet.ru/eng/znsl2772 https://www.mathnet.ru/eng/znsl/v47/p155
|
Statistics & downloads: |
Abstract page: | 112 | Full-text PDF : | 43 |
|