Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1974, Volume 47, Pages 120–137 (Mi znsl2770)  

Embedding theorems for weighted classes of harmonic and analytic functions

V. L. Oleinik
Abstract: The inequality \[ (\int_\Omega|u|^qd\mu)^{1/q} \leq C (\int_\Omega|u|^p\rho d\lambda)^{1/p}, \tag{1} \] is established for analytic (harmonic) functions. Here $\rho$ is a continuous weight functions, $\lambda$ the Lebesgue measure and $\mu$ – a Borel measure. Necessary and sufficient conditions on the measure $\mu$ are given for some concrete $\Omega$ and $\rho$.
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: V. L. Oleinik, “Embedding theorems for weighted classes of harmonic and analytic functions”, Investigations on linear operators and function theory. Part V, Zap. Nauchn. Sem. LOMI, 47, "Nauka", Leningrad. Otdel., Leningrad, 1974, 120–137
Citation in format AMSBIB
\Bibitem{Ole74}
\by V.~L.~Oleinik
\paper Embedding theorems for weighted classes of harmonic and analytic functions
\inbook Investigations on linear operators and function theory. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1974
\vol 47
\pages 120--137
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2770}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=369705}
\zmath{https://zbmath.org/?q=an:0355.31003}
Linking options:
  • https://www.mathnet.ru/eng/znsl2770
  • https://www.mathnet.ru/eng/znsl/v47/p120
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:318
    Full-text PDF :175
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024