Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 332, Pages 193–219 (Mi znsl270)  

This article is cited in 9 scientific papers (total in 9 papers)

Asymptotics of a solution to the Neumann problem in a thin domain with the sharp edge

S. A. Nazarova, Ya. Taskinenb

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
b University of Helsinki, Department of Mathematics and Statistics
Full-text PDF (299 kB) Citations (9)
References:
Abstract: The asymptotic expansion of the solution of the Neumann problem for the second order equation in a thin domain with the sharp edge is constructed and justified. Because of the presence of a edge with the zero casp the limit equation on the longitudinal section of a domain obtained as a result of the procedure of lowering a dimention proves to be degenerating and its solution has a nonregular behavior near a boundary.
Received: 25.04.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 142, Issue 6, Pages 2630–2644
DOI: https://doi.org/10.1007/s10958-007-0151-0
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: S. A. Nazarov, Ya. Taskinen, “Asymptotics of a solution to the Neumann problem in a thin domain with the sharp edge”, Mathematical problems in the theory of wave propagation. Part 35, Zap. Nauchn. Sem. POMI, 332, POMI, St. Petersburg, 2006, 193–219; J. Math. Sci. (N. Y.), 142:6 (2007), 2630–2644
Citation in format AMSBIB
\Bibitem{NazTas06}
\by S.~A.~Nazarov, Ya.~Taskinen
\paper Asymptotics of a~solution to the Neumann problem in a~thin domain with the sharp edge
\inbook Mathematical problems in the theory of wave propagation. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 332
\pages 193--219
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl270}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252995}
\zmath{https://zbmath.org/?q=an:05051345}
\elib{https://elibrary.ru/item.asp?id=9172505}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 142
\issue 6
\pages 2630--2644
\crossref{https://doi.org/10.1007/s10958-007-0151-0}
\elib{https://elibrary.ru/item.asp?id=13534912}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247242717}
Linking options:
  • https://www.mathnet.ru/eng/znsl270
  • https://www.mathnet.ru/eng/znsl/v332/p193
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :113
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024