Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1974, Volume 40, Pages 142–147 (Mi znsl2691)  

On a hierarchy of Brouwer constructive functionals

N. A. Shanin
Full-text PDF (427 kB) (1)
Abstract: An account is given on a variant (obeying principles of the constructive mathematics) of hierarchy approach to make precise L. E. J. Brouwer's idea of the notion of arithmetical functional defined on unary number-theoretic functions and computable from a finite number of values of its argument. Given a constructive ordinal $\beta$ a formula is constructed expressing the relation $\ll t_0$ is a godelnumber of a general recursive function (representing a functional) which bars the node of universal spread with number $t_1$ on the height not exceeding $\beta\gg$. This formula is equivalent to one of the form $\exists t_2\forall t_3\exists t_4(\varphi(t_0,t_1,t_3,t_4)=0)$, $\varphi$ being Kalmar-elementary. Functionals satisfying this condition with $t_1=0$ are called constructive Brouwer functionals of rank $\beta$. Brouwer uniform continuity theorem for constructive Brouwer functionals of rank $\beta$ can be proved by induction on $\beta$.
Bibliographic databases:
UDC: 51.01:519.5+51.01:518.5
Language: Russian
Citation: N. A. Shanin, “On a hierarchy of Brouwer constructive functionals”, Studies in constructive mathematics and mathematical logic. Part VI, Zap. Nauchn. Sem. LOMI, 40, "Nauka", Leningrad. Otdel., Leningrad, 1974, 142–147
Citation in format AMSBIB
\Bibitem{Sha74}
\by N.~A.~Shanin
\paper On a~hierarchy of Brouwer constructive functionals
\inbook Studies in constructive mathematics and mathematical logic. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1974
\vol 40
\pages 142--147
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2691}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=411945}
\zmath{https://zbmath.org/?q=an:0361.02046}
Linking options:
  • https://www.mathnet.ru/eng/znsl2691
  • https://www.mathnet.ru/eng/znsl/v40/p142
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024