Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1974, Volume 40, Pages 110–118 (Mi znsl2686)  

On $E$-theorems

G. E. Mints
Abstract: There are [1] many methods to construct for every proof of a sentence $\exists x A$ in Heyting (intuitionistic) arithmetic $HA$ [2] a term $t_p$ such that $A[t_p]$ is true (in some sence). It turns out that majority of these methods are equivalent: correspondent terms $t_p$ are convertible into one and the same natural number. This is proved here for three methods: (I) complete cut-elimination in the infinite formulation of $HA$ [3]; (II) recursive realizability [2]; (III) partial cut-elimination along the lines of Gentsen's 2-nd consistency proof [5]. [6] or normalization [7], [8]. It is shown that the process of cut-elimination by method (I) leads only to computation of values of terms associated with a given proof by methods (II) and (III).
Bibliographic databases:
UDC: 51.01:164
Language: Russian
Citation: G. E. Mints, “On $E$-theorems”, Studies in constructive mathematics and mathematical logic. Part VI, Zap. Nauchn. Sem. LOMI, 40, "Nauka", Leningrad. Otdel., Leningrad, 1974, 110–118
Citation in format AMSBIB
\Bibitem{Min74}
\by G.~E.~Mints
\paper On $E$-theorems
\inbook Studies in constructive mathematics and mathematical logic. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1974
\vol 40
\pages 110--118
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=398795}
\zmath{https://zbmath.org/?q=an:0368.02034}
Linking options:
  • https://www.mathnet.ru/eng/znsl2686
  • https://www.mathnet.ru/eng/znsl/v40/p110
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024