Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1974, Volume 40, Pages 101–109 (Mi znsl2685)  

Heytiag predicate calculus with $\varepsilon$-symbol

G. E. Mints
Abstract: It is known that the introduction of $\varepsilon$-symbol with $\varepsilon$-axioms $A[t]\to A[\varepsilon x A]$ leads to non-conservative extension. For example $\exists x(\rceil P_x\to\rceil Pb\&\rceil Pa)$ becomes derivable. A conservative extension is obtained by treating $\varepsilon$-symbol like $\iota$-symbol: for every occurence $\varepsilon x A[x,\alpha_1\dots,\alpha_n]$ in a sequent from a deduction formula $\forall\alpha_1\dots\forall\alpha_n\exists x A$ should occur in the antecedent of this sequent. Cut-elimination is proved for the resulting system $HPC^{\varepsilon}$. It is pointed out that the proof could be extended to $HPC$ with decidable equality and to Heyting arithmetic with free function variables and the principle of choice:
$$ \Gamma\to\forall x\exists y A;\quad\forall x A_y[f(x)],\quad\Gamma\to C\vdash\Gamma\to C. $$

The extension to Heyting arithmetic with bound variables of higher types and corresponding choice principle requires new ideas.
Bibliographic databases:
UDC: 51.01
Language: Russian
Citation: G. E. Mints, “Heytiag predicate calculus with $\varepsilon$-symbol”, Studies in constructive mathematics and mathematical logic. Part VI, Zap. Nauchn. Sem. LOMI, 40, "Nauka", Leningrad. Otdel., Leningrad, 1974, 101–109
Citation in format AMSBIB
\Bibitem{Min74}
\by G.~E.~Mints
\paper Heytiag predicate calculus with $\varepsilon$-symbol
\inbook Studies in constructive mathematics and mathematical logic. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1974
\vol 40
\pages 101--109
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=398794}
\zmath{https://zbmath.org/?q=an:0358.02023}
Linking options:
  • https://www.mathnet.ru/eng/znsl2685
  • https://www.mathnet.ru/eng/znsl/v40/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024