Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1974, Volume 40, Pages 77–93 (Mi znsl2683)  

This article is cited in 4 scientific papers (total in 4 papers)

The existence of non-effectivizable estimates in the theory of exponential Diophantine equations

Yu. V. Matiyasevich
Full-text PDF (787 kB) Citations (4)
Abstract: The following corrollary of the main theorem of the paper is an example of the estimates mentioned in the title:
There is a particular polynomial $A(a,x_1,\dots,x_{\nu})$ with integer coefficients meeting the following two conditions. Firstly, for every natural value of the parameter $a$ the equation
$$ A(a,x_1,\dots,x_{\nu})=y+4^y $$
has at most one solution in natural $x_1,\dots,x_{\nu},y$. Secondly, for every general recursive (i.e., effectively computable) function $C$ there is a value of the parameter $a$ for which there is a solution $x_1,\dots,x_{\nu},y$ of the above equation such that
$$ \max\{x_1,\dots,x_{\nu},y\}>C(a) $$

The main theorem states that for every recursively enumerable predicate $P(a_1,\dots,a_{\lambda})$ there are expressions $\mathfrak A$ and $\mathfrak L$ built up from natural numbers and variables $a_1,\dots,a_{\lambda}$, $z_1,\dots,z_{\chi}$ by addition, multiplication and exponentation such that
$$ P(a_1,\dots,a_{\lambda})\Leftrightarrow(\exists z_1\dotsb z_{\chi})[\mathfrak A=\mathfrak L_1]\Leftrightarrow(\exists!z_1\dotsb z_{\chi})[\mathfrak A=\mathfrak L_1]. $$
A possibility to obtain similar results for Diophantine equations is discussed.
Bibliographic databases:
UDC: 51.01:518.5+519.1
Language: Russian
Citation: Yu. V. Matiyasevich, “The existence of non-effectivizable estimates in the theory of exponential Diophantine equations”, Studies in constructive mathematics and mathematical logic. Part VI, Zap. Nauchn. Sem. LOMI, 40, "Nauka", Leningrad. Otdel., Leningrad, 1974, 77–93
Citation in format AMSBIB
\Bibitem{Mat74}
\by Yu.~V.~Matiyasevich
\paper The existence of non-effectivizable estimates in the theory of exponential Diophantine equations
\inbook Studies in constructive mathematics and mathematical logic. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1974
\vol 40
\pages 77--93
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2683}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=374025}
\zmath{https://zbmath.org/?q=an:0361.02057}
Linking options:
  • https://www.mathnet.ru/eng/znsl2683
  • https://www.mathnet.ru/eng/znsl/v40/p77
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :127
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024