Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 332, Pages 90–98 (Mi znsl263)  

This article is cited in 2 scientific papers (total in 2 papers)

Waveforms in additional components of elastic bulk waves

A. P. Kiseleva, G. Huetb, M. Deschampsb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Université Bordeaux 1
Full-text PDF (199 kB) Citations (2)
References:
Abstract: Additional components in elastic wavefields displacements are those which vanish in the case of a homogeneous–plane–wave propagation. For $P$–waves in a homogeneous isotropic solid, these are the transverse components. Waveforms in additional components in simple models of non–time–harmonic elastic wave propagation with plane wavefronts are analyzed. It is demonstrated that the models based on homogeneous waves with a transverse structure and inhomogeneous waves show a qualitative difference.
Received: 06.06.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 142, Issue 6, Pages 2571–2575
DOI: https://doi.org/10.1007/s10958-007-0144-z
Bibliographic databases:
UDC: 550.3, 534.2, 517.9, 539.3
Language: English
Citation: A. P. Kiselev, G. Huet, M. Deschamps, “Waveforms in additional components of elastic bulk waves”, Mathematical problems in the theory of wave propagation. Part 35, Zap. Nauchn. Sem. POMI, 332, POMI, St. Petersburg, 2006, 90–98; J. Math. Sci. (N. Y.), 142:6 (2007), 2571–2575
Citation in format AMSBIB
\Bibitem{KisHueDes06}
\by A.~P.~Kiselev, G.~Huet, M.~Deschamps
\paper Waveforms in additional components of elastic bulk waves
\inbook Mathematical problems in the theory of wave propagation. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 332
\pages 90--98
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl263}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252988}
\zmath{https://zbmath.org/?q=an:1096.74030}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 142
\issue 6
\pages 2571--2575
\crossref{https://doi.org/10.1007/s10958-007-0144-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247213938}
Linking options:
  • https://www.mathnet.ru/eng/znsl263
  • https://www.mathnet.ru/eng/znsl/v332/p90
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :69
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024