Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 332, Pages 48–69 (Mi znsl261)  

This article is cited in 2 scientific papers (total in 2 papers)

Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates

A. P. Katchalov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (245 kB) Citations (2)
References:
Abstract: The Hamilton–Jacobi equations for the phase function of the quasijet solutions in the case of Finsler geometry are considered in the paper. This case corresponds to the physical probleom of waves propagation in anisotropic media. The wave field corresponding to the quasijet solution propagate along a geodesic. Due to that all considerations of the paper are provided in the Fermi coordinates close to the geodesic. The quadratic term of the phase function after extracting the frequency factor satisfy the covariant Riccati equation. Especially simple form for the equation is obtained for the case of Riemannian geometry. Nontrivial coefficients of the Riccati equation coincide with elements of the curvature tensor. In the case of Findsler geometry all considerations are more complicated. Nevertheless, the main role in the Riccati equations play elements of the third Kartan curvature tensor computen on the tangential elements to the geodesic.
Received: 20.06.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 142, Issue 6, Pages 2546–2558
DOI: https://doi.org/10.1007/s10958-007-0142-1
Bibliographic databases:
UDC: 534.226
Language: Russian
Citation: A. P. Katchalov, “Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates”, Mathematical problems in the theory of wave propagation. Part 35, Zap. Nauchn. Sem. POMI, 332, POMI, St. Petersburg, 2006, 48–69; J. Math. Sci. (N. Y.), 142:6 (2007), 2546–2558
Citation in format AMSBIB
\Bibitem{Kac06}
\by A.~P.~Katchalov
\paper Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates
\inbook Mathematical problems in the theory of wave propagation. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 332
\pages 48--69
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252986}
\zmath{https://zbmath.org/?q=an:1099.53019}
\elib{https://elibrary.ru/item.asp?id=13541277}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 142
\issue 6
\pages 2546--2558
\crossref{https://doi.org/10.1007/s10958-007-0142-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247237252}
Linking options:
  • https://www.mathnet.ru/eng/znsl261
  • https://www.mathnet.ru/eng/znsl/v332/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :78
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024