Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 332, Pages 19–37 (Mi znsl259)  

This article is cited in 15 scientific papers (total in 15 papers)

On a control problem for the wave equation in $\mathbf R^3$

M. I. Belishev, A. F. Vakulenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: We consider the solutions of the wave equation (waves) initiated by the infinitely far sources (controls) and study the $L_2$-completeness of the reachable sets consisting of such waves. This problem is a natural analog of the control problem for a bounded domain where the completeness (local approximate controllability) in the subdomains filled with waves generated by boundary controls occurs. We show that, in contrast to the latter case, the reachable sets formed by the waves incoming from infinity, aren't complete in the filled subdomains and describe the corresponding defect. Then, extending the class of controls on a set of special polynomials, we gain the completeness. A transform defined by jumps appearing in result of projecting functions on the reachable sets is introduced. Its relation to the Radon transform is clarified.
Received: 15.04.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 142, Issue 6, Pages 2528–2539
DOI: https://doi.org/10.1007/s10958-007-0140-3
Bibliographic databases:
UDC: 517
Language: Russian
Citation: M. I. Belishev, A. F. Vakulenko, “On a control problem for the wave equation in $\mathbf R^3$”, Mathematical problems in the theory of wave propagation. Part 35, Zap. Nauchn. Sem. POMI, 332, POMI, St. Petersburg, 2006, 19–37; J. Math. Sci. (N. Y.), 142:6 (2007), 2528–2539
Citation in format AMSBIB
\Bibitem{BelVak06}
\by M.~I.~Belishev, A.~F.~Vakulenko
\paper On a control problem for the wave equation in~$\mathbf R^3$
\inbook Mathematical problems in the theory of wave propagation. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 332
\pages 19--37
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2252984}
\zmath{https://zbmath.org/?q=an:1162.35013}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 142
\issue 6
\pages 2528--2539
\crossref{https://doi.org/10.1007/s10958-007-0140-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247202092}
Linking options:
  • https://www.mathnet.ru/eng/znsl259
  • https://www.mathnet.ru/eng/znsl/v332/p19
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :122
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024