Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1972, Volume 32, Pages 140–147 (Mi znsl2576)  

On constructive operators of finite types

V. P. Chernov
Abstract: Finite types and the spaces of finite type are defined as follows: the space of type $0$ is $N$; the spaces of types $(c\times d)$ and $(c\to d)$ are respectively the product of the spaces of types $c$ and $d$ and the space of constructive mappings (effective operations) from the space of type $c$ into the space of type $d$. Strong sheaf-spaces (s.s.s.) are introduced and the spaces of finite types are proved (with the help of Myhill–Shepherdson theorem) to be s.s.s. The theorem about the universal constructive mapping and the normal form theorem are proved for the mappings of s.s.s.
The notion of a minimal element of s.s.s. is introduced,minimal elements of the space of partial recursive functions being general recursive functions.
The structure of the set of minimal elements of s.s.s. is investigated and Ceitin–Ereisel–Lacombe–Shoenfield theorem is generalized to embeddings of arbitrary s.s.s.
Bibliographic databases:
Language: Russian
Citation: V. P. Chernov, “On constructive operators of finite types”, Studies in constructive mathematics and mathematical logic. Part V, Zap. Nauchn. Sem. LOMI, 32, "Nauka", Leningrad. Otdel., Leningrad, 1972, 140–147
Citation in format AMSBIB
\Bibitem{Che72}
\by V.~P.~Chernov
\paper On constructive operators of finite types
\inbook Studies in constructive mathematics and mathematical logic. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1972
\vol 32
\pages 140--147
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2576}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=384507}
Linking options:
  • https://www.mathnet.ru/eng/znsl2576
  • https://www.mathnet.ru/eng/znsl/v32/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024